
Verifying weight biased leftist heaps using
dependent types

Jan Stolarek

Instytut Informatyki
Politechnika Łódzka

Poland
jan.stolarek@p.lodz.pl

Abstract. This paper is an intermediate level tutorial on verification
using dependent types in Agda. It is also a case study of weight biased
leftist heap data structure in a purely functional, dependently typed
setting. Paper demonstrates how to write a formally verified implemen-
tation that is guaranteed to maintain that structure’s invariants. The
reader will learn how to construct complex equality proofs by building
them from smaller parts. This knowledge will enable the reader to un-
derstand more advanced verification techniques, eg. equational reasoning
provided by Agda’s standard library or tactics system found in Idris and
Coq programming languages.

1 Introduction

Formal verification is a subject that constantly attracts attention of the research
community. Static type systems are considered to be a lightweight verification
method but they can be very powerful and precise as well. Dependent type
systems in languages like Agda [1], Idris [2] or Coq [3] can be successfully applied
in practical verification tasks but they are not yet as widely used as they could
potentially be. This paper contributes to changing that.

1.1 Motivation

Two things have motivated me to write this paper. Firstly, while there are many
tutorials on dependently typed programming and basics of verification, I could
find little material demonstrating how to put verification to practical use. A
must-read introductory paper “Why Dependent Types Matter” by Altenkirch,
McKinna and McBride [4], which demonstrates how to use dependent types to
prove correctness of merge sort algorithm, actually elides many proof details
that are required in a real-world application. I want to fill in that missing gap
by writing a tutorial that picks up where other tutorials have ended.

My second motivation comes from reading Okasaki’s classical “Purely Func-
tional Data Structures” [5]. Despite book’s title many presented implementations
are not purely functional as they make use of impure exceptions to handle cor-
ner cases (eg. taking head of an empty list). I realised that using dependent

types allows to do better and it is instructive to build a provably correct purely
functional data structure on top of Okasaki’s presentation.

In the end this paper is both a tutorial and a case study of weight biased
leftist heap implemented in dependently typed setting. My goal is to teach the
reader how to build complex proofs from simple ones. As a result the reader
will be able to verify that operations on a data structure maintain required
invariants. Acquired knowledge will allow to understand more advanced verifi-
cation techniques, eg. equational reasoning provided by Agda’s standard library
or tactics system found in Idris [2] and Coq [3].

1.2 Companion code

This tutorial comes with a standalone companion code written in Agda 2.3.412.
I assume the reader is reading companion code along with the paper. Due to
space limitations I elide some proofs that are detailed in the code using Notes
convention adapted from GHC project [6].

“Living” version of companion code is available at GitHub3 and it may receive
updates after the paper is published.

1.3 Assumptions

I assume that reader has basic understanding of Agda, some elementary defini-
tions and proofs. In particular I assume the reader is familiar with definition of
natural numbers (Nats) and their addition (+) as well as proofs of basic proper-
ties of addition like associativity, commutativity or 0 as right identity (a+0 ≡ a).
Reader should also understand refl with its basic properties (symmetry, con-
gruence, transitivity and substitution), know the concept of “data as evidence”
and other ideas presented in “Why Dependent Types Matter” [4] as I will build
upon them. All of these are implemented in the Basics module in the companion
code. Module Basics.Reasoning reviews in detail the above-mentioned proofs.

1.4 Notation and conventions

In the rest of the paper I will denote heaps using typewriter font and their
ranks using an italic type. The description of merge algorithm will mention heaps
h1 and h2 with ranks h1 and h2 respectively, their left children (l1 in h1 and l2
in h2) and right children (r1 in h1 and r2 in h2) with p1 and p2 as the priorities
of root elements in h1 and h2 respectively. In the text I will use ⊕ to denote
heap merging operation. So h1⊕h2 will be a heap created by merging h1 with
h2, while h1⊕h2 will be the rank of the merged heap.
1 http://ics.p.lodz.pl/~stolarek/_media/pl:research:dep-typed-wbl-heaps.
tar.gz

2 NOTE TO THE REVIEWER: Agda 2.3.4 is planned to be released sometime in
February or March. Companion code was created using latest development version
of Agda. This notice will be removed from final version of the paper.

3 https://github.com/jstolarek/dep-typed-wbl-heaps

I will represent priority using natural numbers with lower number meaning
higher priority. This means that 0 will be the highest priority, while the lowest
priority will be unbounded. This also means that if p1 > p2 holds as a relation
on natural numbers then p2 is higher priority than p1.

In the text I will use numerals to represent Nats but the code uses encoding
based on zero and suc. Thus 2 in the text will correspond to suc (suc zero)
in the source code.

I will use { }? in code listings to represent Agda holes.
Remember that any sequence of Unicode characters is a valid identifier in

Agda. Thus l≥r is an identifier, while l ≥ r is application of ≥ operator to l
and r operands.

1.5 Contributions

This paper contributes the following:

– Section 3 presents unverified implementation and the problem of partiality
of functions operating on a weight biased leftist heap. While the problem
in general is well-known the solution to this particular case can be com-
bined with verification of one of data structure’s invariants. This is done in
Section 4.

– Section 5 outlines a technique for constructing equality proofs using transi-
tivity of propositional equality. This simple, standalone technique provides
ground for understanding verification mechanisms used in Agda’s standard
library.

– Section 6 uses the technique introduced in Section 5 to prove code obtained
by inlining one function into another. This shows how programs created
from small, verified components can be proved correct by composing proofs
of these components.

– Section 7 contains a case study of how a proof of data structure invariant
influences the design of an API. This is demonstrated on the example of
priority invariant proof and its influence on designing insertion of a new
element into a heap.

2 Weight biased leftist heaps

A heap is a tree-based data structure used to implement priority queue. Each
node in a heap satisfies priority property : priority of element at the node is not
lower than priority of the children nodes4. Therefore element with the highest
priority is stored at the root. Access to it has O(1) complexity.

Weight biased leftist tree [7] is a binary tree that satisfies rank property : for
each node rank of its left child is not smaller than rank of its right child. Rank
of a tree is defined as its size (number of nodes). Weight biased leftist tree that
satisfies priority property is called a weight biased leftist heap.
4 I will also refer to children of a node as “subtrees” or “subheaps”.

Right spine of a node is the rightmost path from that node to an empty
node. From priority property it follows that right spine of a weight biased leftist
heap is an ordered list (in fact, any path from root to a leaf is!). Two weight
biased leftist heaps can be merged in O(log n) time by merging their right spines
in the same way one merges ordered lists and then swapping children along the
right spine of merged heap to restore rank property [5]. Inserting new element
into weight biased leftist heap can be defined as merging existing heap with a
newly created singleton heap (ie. a heap storing exactly one element). Deleting
element with the highest priority can be defined as merging children of the root
element.

3 Unverified implementation5

We begin by implementing the described algorithms without any proof of their
correctness. We define Heap datatype as:

data Heap : Set where
empty : Heap
node : Priority → Rank → Heap → Heap → Heap

According to this definition a heap is either empty or it is a node with priority,
rank and two subheaps. Both Priority and Rank are aliases to Nat, which allows
us to perform on them any operation that works on Nat type. Note that storing
rank in a node is redundant: we could just compute size of a heap whenever
necessary. I choose to store rank in the constructor because it will be instructive
to show how it is converted into inductive type family index (see Section 4).

3.1 Merging two heaps

Heaps h1 and h2 are merged using a recursive algorithm. We need to consider
four cases:

1. (base case) h1 is empty: return h2.
2. (base case) h2 is empty: return h1.
3. (inductive case) priority p1 is higher than p2: p1 becomes new root, l1

becomes its one child and r1⊕h2 becomes the other.
4. (inductive case) priority p2 is higher than or equal to p1: p2 becomes new

root, l2 becomes its one child and r2⊕h1 becomes the other.

There is no guarantee that r1⊕h2 (or r2⊕h1) is smaller than l1 (or l2). To en-
sure that rank invariant is maintained we use helper function makeT, as proposed
by Okasaki [5]. We pass new children and the priority to makeT, which creates a
new node with the given priority and swaps the children if necessary (see List-
ing 1). As Okasaki points out this algorithm can be view as having two passes:
a top-down pass that performs merging and a bottom-up pass that restores the
rank invariant.
5 Implementation for this section is located in the TwoPassMerge.NoProofs module of
the companion code.

makeT : Priority → Heap → Heap → Heap
makeT p l r with rank l ≥ rank r
makeT p l r | true = node p (suc (rank l + rank r)) l r
makeT p l r | false = node p (suc (rank l + rank r)) r l

merge : Heap → Heap → Heap
merge empty h2 = h2
merge h1 empty = h1
merge (node p1 h1-r l1 r1) (node p2 h2-r l2 r2)

with p1 < p2
merge (node p1 h1-r l1 r1) (node p2 h2-r l2 r2)

| true = makeT p1 l1 (merge r1 (node p2 h2-r l2 r2))
merge (node p1 h1-r l1 r1) (node p2 h2-r l2 r2)

| false = makeT p2 l2 (merge (node p1 h1-r l1 r1) r2)

Listing 1: Implementation of makeT and merge. rank returns rank of a tree.

3.2 Inserting element into a heap

Insert is defined by merging with a singleton heap as described in Section 2. See
companion code for implementation.

3.3 Finding and removing element with the highest priority

To retrieve element with the highest priority we return value stored in the root
of a heap:

findMin : Heap → Priority
findMin empty = { }?
findMin (node p _ _ _) = p

Here we encounter a problem: what should findMin return for an empty heap? If
we were using a language like Haskell or ML one thing we could consider is raising
an exception. This is the choice made by Okasaki in “Purely Functional Data
Structures”. But throwing an exception is precisely the thing that would make
our implementation impure! Besides Agda is a total language, which means that
every function must terminate with a result. Raising an exception is therefore
not an option. Another alternative is to assume a default priority that will be
returned for an empty heap. This priority would have to be some distinguished
natural number. 0 represents the highest priority so it is unreasonable to assume
it as default. We could return ∞, which represents the lowest possible priority.
This would require us to extend definition of Nat with ∞, which in turn would
force us to modify all functions that pattern match on values of Nat. Redefining
natural numbers for the sake of getting one function right also does not sound
like a good option. Let’s face it – our types do not reflect the fact that findMin
function is not defined for an empty heap! To solve this problem we need to be
more specific about types. One solution would be to use Maybe datatype:

data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A

findMinM : Heap → Maybe Priority
findMinM empty = nothing
findMinM (node p _ _ _) = just p

Returning nothing is like saying “no output exists for the given input data”.
This allows us to express the fact that findMin is not defined for some input
values. This solution works but it forces every caller of findMinM to inspect the
result and be prepared for nothing, which means extra boilerplate in the code
and checks during run time. Implementation of deleteMin based on description
in Section 2 faces the same problem.

The best solution to this issue is to ensure that findMin and deleteMin
cannot be applied to an empty heap. We can achieve this by indexing Heap with
its size. Doing so will also allow us to prove the rank property.

4 Proving rank property6

We will now prove that our implementation maintains the rank property. The
first step is to express Rank at the type level as an index of Heap datatype. Since
rank of a heap is now part of its type we can ensure at compile time that rank of
left subtree is not smaller than rank of the right subtree. We do this be requiring
that node constructor is given a proof that rank invariant holds. To express such
proof we use ≥ datatype:

data _≥_ : Nat → Nat → Set where
ge0 : {y : Nat} → y ≥ zero
geS : {x y : Nat} → x ≥ y → suc x ≥ suc y

Values of this type, which is indexed by two natural numbers, prove that: a) any
natural number is greater than or equal to 0 (ge0 constructor); b) if two numbers
are in greater-equal relation then their successors are also in that relation (geS
constructor). This type represents concept of data as evidence [4]. We use order
function to compare two natural numbers and Order datatype to express the
result. Implementation is located in Basics.Ordering module of the companion
code.

Having defined ≥ we can now give new definition of Heap:

data Heap : Rank → Set where
empty : Heap zero
node : {l r : Rank} → Priority → l ≥ r →

Heap l → Heap r → Heap (suc (l + r))
6 Implementation for this section is located in the TwoPassMerge.RankProof module
of the companion code.

Empty heap contains no elements and so empty returns Heap indexed with 0.
Non-empty node stores an element and two children of rank l and r. Therefore
the size of the resulting heap is 1 + l + r, which we express as suc(l + r). We
must also supply a value of type l ≥ r to the constructor, ie. we must provide
evidence that rank invariant holds.

Proving the rank invariant itself is surprisingly simple. We can obtain evi-
dence that rank of left subtree is not smaller than rank of right subtree by replac-
ing ≥ in makeT with order, which compares two Nats and supplies evidence of the
result. But there is another difficulty here. Recall that the merging algorithm is
two pass: we use merge to actually do the merging and makeT to restore the rank
invariant if necessary. Since we index heaps by their rank we now require that
makeT and merge construct trees of correct rank. We must therefore prove that:
a) makeT creates a node with rank equal to sum of children nodes’ ranks plus one;
b) merge creates a heap with rank equal to the sum of ranks of heaps being
merged.

4.1 Proving makeT

makeT takes subtrees of rank l and r and produces a new tree with rank suc(l+r),
where suc follows from the fact that the node itself is storing one element. We
must prove that each of two cases of makeT returns heap of correct rank:

1. If l is greater than or equal to r then no extra proof is necessary as everything
follows from the definition of + and type signature of node.

2. If r is greater than or equal to l then we must swap l and r subtrees. This
requires us to prove that:

suc(r + l) ≡ suc(l + r)

That proof is done using congruence on suc function and commutativity of
addition. We will define that proof as makeT-lemma.

Listing 2 shows new code of makeT. Notice how subst applies the proof to the
Heap type constructor and converts the type produced by (node p r≥l r l)
expression into the type given in makeT type signature.

makeT-lemma : (a b : Nat) → suc (a + b) ≡ suc (b + a)
makeT-lemma a b = cong suc (+comm a b)

makeT : {l r : Rank} → Priority → Heap l → Heap r → Heap (suc (l + r))
makeT {l-rank} {r-rank} p l r with order l-rank r-rank
makeT {l-rank} {r-rank} p l r | ge l≥r

= node p l≥r l r
makeT {l-rank} {r-rank} p l r | le r≥l

= subst Heap (makeT-lemma r-rank l-rank) (node p r≥l r l)

Listing 2: Implementation of makeT with verified rank property.

4.2 Proving merge

We now verify that all four cases of merge shown in Listing 1 produce heap of
required rank.

base cases In the first base case we have h1 ≡ 0. Therefore:

h1 + h2 ≡ 0 + h2
+,(1)
≡ h2

Which ends the first proof – everything follows from definition of +7. In the
second base case h2 ≡ 0 and things are slightly more difficult: the definition of
+ only says that 0 is the left identity but it does not say that it is also the right
identity. We must therefore construct a proof that:

h1 + 0
?≡ h1

Luckily for us, we already have that proof defined in the Basics.Reasoning
module as +0. Since that proof is in the opposite direction – it proves a ≡ a+0,
not a+ 0 ≡ a – we have to use symmetry of ≡ .

inductive cases In an inductive case we know that neither h1 nor h2 is empty,
ie. their ranks are given as suc(l1+r1) and suc(l2+r2) respectively. This means
that Agda sees expected rank of the merged heap as:

suc(l1 + r1) + suc(l2 + r2)
+,(2)
≡ suc((l1 + r1) + suc(l2 + r2))

This will be our goal in both proofs of inductive cases.
In the first inductive case we construct the result by calling8:

makeT p1 l1 (merge r1 (node p2 l2≥r2 l2 r2))

Call to node with l2 and r2 as parameters produces node of rank suc(l2 + r2).
Passing it to merge together with r1 gives a tree of rank r1 + suc(l2 + r2) (by
the type signature of merge). Passing result of merge to makeT produces tree
of rank suc(l1 + (r1 + suc(l2 + r2))) by the type signature of makeT. We must
therefore construct a proof that:

suc(l1 + (r1 + suc(l2 + r2))) ≡ suc((l1 + r1) + suc(l2 + r2))

Appealing to congruence on suc leaves us with a proof of:

l1 + (r1 + suc(l2 + r2)) ≡ (l1 + r1) + suc(l2 + r2)

7 The
+,(1)
≡ notation means that equality follows from the first defining equation of +.

8 Note that node constructor in the unverified implementation show in Listing 1 takes
slightly different parameters. This is because we changed the definition of Heap
datatype to take the proof of rank property instead of storing the rank in the con-
structor.

Substituting a = l1, b = r1 and c = suc(l2 + r2) gives:

a+ (b+ c) ≡ (a+ b) + c

This is associativity of addition that we have already proved in Basics.Reasoning.
The proof of second inductive case is much more interesting. This time we

construct the result by calling:

makeT p2 l2 (merge r2 (node p1 l1≥r1 l1 r1))

and therefore have to prove:

suc(l2 + (r2 + suc(l1 + r1))) ≡ suc((l1 + r1) + suc(l2 + r2))

Again we use congruence to deal with the outer calls to suc and substitute a = l2,
b = r2 and c = l1 + r1. This leaves us with a proof of lemma A:

a+ (b+ suc c) ≡ c+ suc(a+ b)

From associativity we know that:

a+ (b+ suc c) ≡ (a+ b) + suc c

If we prove lemma B:

(a+ b) + suc c ≡ c+ suc(a+ b)

then we can combine lemmas A and B using transitivity to get the final proof.
We substitute n = a+ b, m = c and rewrite lemma B as:

n+ sucm ≡ m+ sucn

From symmetry of +suc we know that:

n+ sucm ≡ suc(n+m)

Using transitivity we combine it with congruence on commutativity of addition
to prove:

suc(n+m) ≡ suc(m+ n)

Again, using transitivity we combine it with +suc to show:

suc(m+ n) ≡ m+ sucn

Which proves lemma B and therefore the whole proof is complete (Listing 3, see
companion code for complete implementation).

lemma-B : (n m : Nat) → n + suc m ≡ m + suc n
lemma-B n m = trans (sym (+suc n m)) (trans (cong suc (+comm n m)) (+suc m n))

lemma-A : (a b c : Nat) → a + (b + suc c) ≡ c + suc (a + b)
lemma-A a b c = trans (+assoc a b (suc c)) (lemma-B (a + b) c)

proof-2 : (l1 r1 l2 r2 : Nat) → suc (l2 + (r2 + suc (l1 + r1)))
≡ suc ((l1 + r1) + suc (l2 + r2))

proof-2 l1 r1 l2 r2 = cong suc (lemma-A l2 r2 (l1 + r1))

Listing 3: Proof of second inductive case of merge.

4.3 insert

Inserting new element into the heap increases its rank by one. Now that rank is
encoded as a datatype index this fact must be reflected in the type signature of
insert. As previously we define insert as merge with a singleton heap. Rank
of singleton heap is 1 (ie. suc zero), while already existing heap has rank n.
According to definition of merge the resulting heap will therefore have rank:

(suc zero) + n
+,(2)
≡ suc(zero+n)

+,(1)
≡ sucn

Which is the size we require in the type signature of insert. This means we
don’t need any additional proof because expected result follows from definition.

4.4 findMin, deleteMin

Encoding rank at the type level allows us to write total versions of findMin
and deleteMin. By requiring that input Heap has rank suc n we exclude the
possibility of passing empty heap to any of these functions.

5 Constructing equality proofs using transitivity

Now that we have conducted an inductive proof of merge in Section 4.2 we can
focus on a general technique used in that proof. Let us rewrite proof-2 in a
different way to see closely what is happening at each step. Inlining lemmas A
and B into proof-2 gives:

proof-2i : (l1 r1 l2 r2 : Nat) → suc (l2 + (r2 + suc (l1 + r1)))
≡ suc ((l1 + r1) + suc (l2 + r2))

proof-2i l1 r1 l2 r2 =
cong suc (trans (+assoc l2 r2 (suc (l1 + r1)))

(trans (sym (+suc (l2 + r2) (l1 + r1)))
(trans (cong suc (+comm (l2 + r2) (l1 + r1)))

(+suc (l1 + r1) (l2 + r2))))

We see that proof-2 is structured around proofs of elementary properties com-
bined using transitivity. In general, if we have to prove a ≡ e and we can prove
a ≡ b using proof 1, b ≡ c using proof 2, c ≡ d using proof 3, d ≡ e using proof 4
then we can combine these proofs to get the final proof of a ≡ e:

trans (proof 1) (trans (proof 2) (trans (proof 3) (proof 4)))

While simple to use, combining proofs using transitivity can be hard to compre-
hend. The intermediate terms are hidden from us and we have to reconstruct
them every time we read our proof. Let us then replace usage of transitivity with
the following notation, which explicitly shows intermediate proof steps together
with their proofs:

a ≡〈proof 1〉
b ≡〈proof 2〉
c ≡〈proof 3〉
d ≡〈proof 4〉
e

Rewriting proof-2i in this notation gives:

suc(l2 + (r2 + suc(l1 + r1))) ≡〈cong suc〉
suc(l2 + (r2 + suc(l1 + r1))) ≡〈+assoc l2 r2 (suc(l1 + r1))〉
suc((l2 + r2) + suc(l1 + r1)) ≡〈sym(+suc (l2 + r2) (l1 + r1))〉

suc(suc((l2 + r2) + (l1 + r1))) ≡〈cong suc (+comm (l2 + r2) (l1 + r1))〉
suc(suc((l1 + r1) + (l2 + r2))) ≡〈+suc (l1 + r1) (l2 + r2)〉
suc((l1 + r1) + suc(l2 + r2))

Grey suc denotes that everything happens under call to suc (thanks to using
congruence on suc as the first proof). Comparing this notation to proof-2i
on the previous page shows that proofs in angle brackets correspond to proofs
combined using trans, while series of expressions left of ≡ parallels our reasoning
from Section 4.2.

6 Proving rank property for single pass merge by
composing existing proofs9

As mentioned in Section 3.1 merge can be viewed as consisting of two passes.
We can obtain a single pass version of the algorithm by inlining calls to makeT
into merge. This new algorithm has two bases cases (as previously) and four
inductive cases:
9 Implementation for this section is located in the SinglePassMerge.RankProof
module of the companion code.

1. (base case) h1 is empty: return h2.
2. (base case) h2 is empty: return h1.
3. (1st inductive case) priority p1 is higher than p2 and l1 is not smaller than

r1⊕h2 : p1 becomes new root, l1 becomes the left child and r1⊕h2 becomes
the right child.

4. (2nd inductive case) priority p1 is higher than p2 and r1⊕h2 is larger than
l1 : p1 becomes new root, r1⊕h2 becomes the left child and l1 becomes the
right child.

5. (3rd inductive case) priority p2 is higher than or equal to p1 and l2 is not
smaller than r2⊕h1 : p2 becomes new root, l2 becomes the left child and
r2⊕h1 becomes the right child.

6. (4th inductive case) priority p2 is higher than or equal to p1 and r2⊕h1 is
larger than l2 : p2 becomes new root, r2⊕h1 becomes the left child and l2
becomes the right child.

Now that we have inlined makeT we must construct proofs of new merge.
Note that previously we made calls to makeT only in inductive cases. This means
that implementation of base cases remains unchanged and so do the proofs. Let
us take a closer look at proofs we need to supply for inductive cases:

– (1st inductive case): call to makeT would not swap left and right children
when creating a node from parameters passed to it. We must prove:

suc(l1 + (r1 + suc(l2 + r2))) ≡ suc((l1 + r1) + suc(l2 + r2))

– (2nd inductive case): call to makeT would swap left and right children when
creating a node from parameters passed to it. We must prove:

suc((r1 + suc(l2 + r2)) + l1) ≡ suc((l1 + r1) + suc(l2 + r2))

– (3rd inductive case): call to makeT would not swap left and right children
when creating a node from parameters passed to it. We must prove:

suc(l2 + (r2 + suc(l1 + r1))) ≡ suc((l1 + r1) + suc(l2 + r2))

– (4th inductive case): call to makeT would swap left and right children when
creating a node from parameters passed to it. We must prove:

suc((r2 + suc(l1 + r1)) + l2) ≡ suc((l1 + r1) + suc(l2 + r2))

First thing to note is that inductive cases 1 and 3 require us to supply the
same proofs as the ones we gave for inductive cases in two-pass merge. This
means we can reuse old proofs. What about cases 2 and 4? One thing we could
do is construct proofs of these properties from scratch using technique described
in Section 5. This is left as an exercise to the reader. Here we will proceed in a
different way.

Notice that properties we have to prove in cases 2 and 4 are very similar to
properties 1 and 3. The only difference between 1 and 2 and between 3 and 4 is

the order of parameters inside outer suc on the left hand side of equality. This
is expected: in cases 2 and 4 we swap left and right subtree passed to node and
this is directly reflected in the types. Now, if we could prove that:

suc((r1 + suc(l2 + r2)) + l1) ≡ suc(l1 + (r1 + suc(l2 + r2)))

and
suc((r2 + suc(l1 + r1)) + l2) ≡ suc(l2 + (r2 + suc(l1 + r1)))

then we could use transitivity to combine these proofs with proofs of inductive
cases 1 and 3. If we abstract the parameters in the above equalities we see that
the property we need to prove in both cases is:

suc(a+ b) ≡ suc(b+ a)

And that happens to be makeT-lemma from Section 4.1! New version of merge
was created by inlining calls to makeT and now it turns out we can construct
proofs of that implementation by composing proofs of makeT and merge using
transitivity. This is exactly the same technique that we developed in Section 5
only this time it is used on a slightly larger scale. It leads to a very elegant
solution presented in module SinglePassMerge.RankProof of the companion
code.

7 Proving priority property10

To prove priority property I will index Heap with Priority and use technique
demonstrated by Altenkirch, McBride and McKinna in Section 5.2 of “Why
Dependent Types Matter” [4]11. Index of value n says that “this heap can store
elements with priorities n or lower”. In other words Heap indexed with 0 can
store any priority, while Heap indexed with 3 can store priorities 3, 4 and lower,
but can’t store 0, 1 and 2. The new definition of Heap looks like this12:

data Heap : Priority → Set where
empty : {n : Priority} → Heap n
node : {n : Priority} → (p : Priority) → Rank → p ≥ n →

Heap p → Heap p → Heap n

As always Heap has two constructors. The empty constructor returns Heap n,
where index n is not constrained in any way. This means that empty heap can
be given any restriction on priorities of stored elements. The node constructor
10 Implementation for this section is located in the TwoPassMerge.PriorityProof

module of the companion code.
11 To keep things simple let’s forget about rank proof we conducted earlier – in this

section we once again store rank explicitly in the node constructor.
12 Actual implementation in the companion code is slightly different. It uses sized types

[8] to guide the termination checker in the merge function. This issue is orthogonal
to the conducted proofs, hence I avoid sized types here for the sake of simplicity.

also creates Heap n but this time n is constrained. If we store priority p in a
node then:

1. the resulting heap can only be restricted to store priorities at least as high as
p. For example, if we create a node that stores priority 3 we cannot restrict
the resulting heap to store priorities 4 and lower, because the fact that we
store 3 in that node violates the restriction. This restriction is expressed by
the p ≥ n parameter: if we can construct a value of type p ≥ n then it
becomes a proof that priority p is lower than or equal to n.

2. children of a node can only be restricted to store priorities that are not
higher than p. Example: if we restrict a node to store priorities 4 and lower
we cannot restrict its children to store priorities 3 or higher. This restriction
is expressed by index p in the subheaps passed to node constructor.

Altenkirch, McKinna and McBride [4] used this technique to prove correct-
ness of merge sort for lists. In a weight biased leftist heap every path from root
to a leaf is a sorted list so extending their technique to heap case is straightfor-
ward. I elide discussion of merge as I offer nothing new compared to Altenkirch’s
paper. I instead focus on issue of creating singleton heaps and inserting elements
into a heap as these cases now become interesting.

When creating a singleton heap we have to answer a question: "what priorities
can we later store in a singleton heap that we just created?". "Any" seems to
be a reasonable answer, which means the resulting heap will be indexed with 0
meaning: "Priorities lower than or equal to 0 – ie. any priorities – can be stored
in this Heap". With such a liberal definition of singleton heap it is easy to write
definition of insert by requiring that both input and output heap can store any
priorities:

singleton : (p : Priority) → Heap zero
singleton p = node p (suc zero) ge0 empty empty

insert : Priority → Heap zero → Heap zero
insert p h = merge (singleton p) h

But what if we want to insert into a heap that is not indexed with 0? One
solution is to be liberal and “promote” that heap so that after insertion it can
store elements with any priorities. Priority restriction can always be loosened
but it cannot be tightened easily. However such a liberal approach might not
always be satisfactory. We might actually want to keep priority bounds as tight
as possible. Let us explore that possibility.

We begin by rewriting the singleton function:

singletonB’ : {b : Priority} → (p : Priority) → p ≥ b → Heap b
singletonB’ p p≥b = node p one p≥b empty empty

Now singletonB’ allows to construct a heap containing a single element with
priority p but the whole heap is bounded by some b. To construct such a heap
we must supply a proof that p can actually be stored in Heap b. We can now
implement new insertion function:

insertB’ : {b : Priority} → (p : Priority) → p ≥ b → Heap p → Heap b
insertB’ p p≥b h = merge (singletonB’ p p≥b) (liftBound p≥b h)

where liftBound is a function that loosens the priority bound of a heap given
evidence that it is possible to do so (ie. that the new bound is less restrictive
than the old one). But if we try to construct a heap using insertB’ we quickly
discover that it is useless:

example-heap : Heap zero
example-heap = (insertB’ (suc zero) ge0

(insertB’ zero { }? empty))

In the second call to insertB’ we are required to supply a proof that 0 ≥ 1,
which of course is not possible. The problem is that using the new insertB’
function we can only lower the bound on the heap and thus insert the elements
into the heap in decreasing order:

example-heap : Heap zero
example-heap = (insertB’ zero ge0

(insertB’ (suc zero) ge0 empty))

This is a direct consequence of our requirement that the heap we are inserting
into is restricted exactly by the priority of element we are inserting.

The bottom line is: one has to carefully consider implications of a proof on
the design of functions that manipulate the data structure.

8 Summary and further reading

This paper demonstrated a simple technique for building complex equality proofs
by composing elementary equalities using transitivity. Understanding this ap-
proach allows the reader to learn more advanced techniques offered by depen-
dently typed languages. Possible next steps include learning mechanisms offered
by Agda’s standard library, namely the ≡-Reasoning located in Relation.
Binary.PropositionalEquality module, which provides notation identical to
the one introduced in Section 5. Another step to take is learning how to conduct
proofs using tactics in languages such as Idris [2] or Coq [3].

Due to space limitations some parts of the companion code were left out
from the discussion. The reader may now wish to take a look at verification
of priority invariant in two-pass and single-pass implementations of merge and
simultaneous proofs of rank and priority invariants.

Acknowledgements

I thank Andreas Abel for his help with using the sized types to guide Agda’s
termination checker.

References

1. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology (2007)

2. Brady, E.: Idris, a general-purpose dependently typed programming language: De-
sign and implementation. Journal of Functional Programming 23(5) (September
2013) 552–593

3. Coq development team development team development team development team
development team development team development team development team devel-
opment team development team development team development team development
team development team development team development team: The Coq proof as-
sistant reference manual. http://coq.inria.fr

4. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter. Unpub-
lished (2005)

5. Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
6. Marlow, S., Peyton Jones, S.: The Glasgow Haskell Compiler. In Brown, A., Wilson,

G., eds.: The Architecture of Open Source Applications. Volume II. (2012)
7. Cho, S., Sahni, S.: Weight biased leftist trees and modified skip lists. Journal of

Experimetnal Algorithmics 3 (1996) 361–370
8. Abel, A.: Semi-continuous sized types and termination. Logical Methods in Com-

puter Science 4(2) (2008)

