
111

Constraint-based type inference for FreezeML

FRANK EMRICH, JAN STOLAREK∗, JAMES CHENEY†, and SAM LINDLEY, The University
of Edinburgh, UK

FreezeML is a new approach to first-class polymorphic type inference that employs term annotations to control

when and how polymorphic types are instantiated and generalised. It conservatively extends Hindley-Milner

type inference and was first presented as an extension to AlgorithmW. More modern type inference techniques

such as HM(𝑋) and OutsideIn(𝑋) employ constraints to support features such as type classes, type families,

rows, and other extensions. We take the first step towards modernising FreezeML by presenting a constraint-

based type inference algorithm. We introduce a new constraint language, inspired by the Pottier/Rémy

presentation of HM(𝑋), in order to allow FreezeML type inference problems to be expressed as constraints.

We present a deterministic stack machine for solving FreezeML constraints and prove its termination and

correctness.

CCS Concepts: • Software and its engineering→ Polymorphism; Functional languages.

Additional Key Words and Phrases: first-class polymorphism, type inference, impredicative types, constraints

ACM Reference Format:
Frank Emrich, Jan Stolarek, James Cheney, and Sam Lindley. 2022. Constraint-based type inference for

FreezeML. Proc. ACM Program. Lang. 6, ICFP, Article 111 (August 2022), 45 pages. https://doi.org/10.1145/
3547642

1 INTRODUCTION
Hindley-Milner type inference is well-studied, yet extending it to provide full support for polymor-

phism (“first-class” polymorphism a la System F) remains an active research topic—characterised

in one recent paper as “a deep, deep swamp” [Serrano et al. 2018]. A term such as 𝜆𝑓 .𝑓 𝑓 , which

would be rejected by Hindley-Milner type inference, may be accepted by a type system permitting

first-class polymorphism, by assigning a sufficiently polymorphic type to 𝑓 , such as ∀𝑎.𝑎 → 𝑎.

However, type inference for System F is undecidable [Wells 1994], meaning that some restrictions

must be imposed. Choosing ∀𝑎.𝑎 as the type for 𝑓 also allows the example above to type-check, but

no System F type can be given to the function that subsumes both choices. A wide range of solutions

has emerged to explore the resulting design space, yielding systems that go beyond System F types,

employ elaborate heuristics that determine the system’s behaviour, require type annotations for

certain terms, or rely on additional syntax, or give up on completeness or principal typing, to name

a few [Garrigue and Rémy 1999; Le Botlan and Rémy 2003; Leijen 2008; Russo and Vytiniotis 2009;

Serrano et al. 2020, 2018; Vytiniotis et al. 2006].

Recently, Emrich et al. [2020] proposed a new approach called FreezeML that has several desirable

properties: it conservatively extends ML type inference, allows expressing arbitrary System F

∗
Also with Lodz University of Technology.

†
Also with The Alan Turing Institute.

Authors’ address: Frank Emrich, frank.emrich@ed.ac.uk; Jan Stolarek, jan.stolarek@ed.ac.uk; James Cheney, james.cheney@

ed.ac.uk; Sam Lindley, sam.lindley@ed.ac.uk, The University of Edinburgh, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/8-ART111

https://doi.org/10.1145/3547642

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

https://doi.org/10.1145/3547642
https://doi.org/10.1145/3547642
https://doi.org/10.1145/3547642

111:2 Emrich et al.

types and computations, and retains decidable, complete type inference. The key ingredient of

FreezeML is the “freezing” operation, an annotation on term-level variables that blocks automatic

instantiation of any quantifiers in that variable’s type. FreezeML also includes let- and lambda-

bindings with ascribed types (which are standard in other systems). Unlike other approaches to

first-class polymorphism that err on the side of explicitness [Garrigue and Rémy 1999; Russo and

Vytiniotis 2009], FreezeML uses just System F types instead of introducing different, incompatible

sorts of polymorphic types.

Freezing enables the programmer to control when instantiation happens instead of requiring

the type inference algorithm to guess or employ some heuristic that the programmer must then

work around. For instance, suppose we have defined functions single : ∀𝑎.𝑎 → List 𝑎, which
creates a singleton list, and choose : ∀𝑎.𝑎 → 𝑎 → 𝑎, which returns one of its arguments (for type

inference purposes it does not matter which). In FreezeML we can define 𝑓1 () = single choose and
𝑓2 () = single ⌈choose⌉. In the former (following the usual ML convention) both single and choose
are fully instantiated before the body is generalised, hence 𝑓1 : ∀𝑎.unit → List (𝑎 → 𝑎 → 𝑎). In
the latter, however, instantiation of choose is frozen, hence 𝑓2 : unit → List (∀𝑎.𝑎 → 𝑎 → 𝑎).
The original presentation of FreezeML type inference was given as an extension to Algorithm

W [Damas and Milner 1982]. Although Algorithm W is well-understood, many modern type

inference implementations, notably Haskell, employ constraint-based type inference [Pottier 2014;
Pottier and Rémy 2005; Vytiniotis et al. 2011] instead in which type inference is split into two

stages, mediated by an intermediate logical language of constraints [Odersky et al. 1999; Pottier and

Rémy 2005]. In the first stage, programs𝑀 are translated to constraints 𝐶 such that 𝐶 is solvable if

and only if𝑀 is typable, and the solutions to𝐶 are the possible types of𝑀 . In the second stage, the

constraint 𝐶 is solved (or shown to be unsatisfiable), without further reference to𝑀 . Adopting a

constraint-based inference strategy has several potential benefits over the traditional Algorithm W-

style, including separating the core logic of type inference from the details of the surface language,

leveraging already-known efficient techniques for constraint solver implementation, and supporting

extensions such as type classes and families, subtyping, rows, units of measure, GADTs [Odersky

et al. 1999; Simonet and Pottier 2007; Vytiniotis et al. 2011], etc.

One influential approach to constraint-based type inference is HM(𝑋) [Odersky et al. 1999; Pottier

and Rémy 2005], that is, Hindley-Milner type inference “parameterised over X”, where 𝑋 stands for

a constraint domain that can be used in types. For example, if 𝑋 is a theory of type equality, one

obtains standard Hindley-Milner type inference HM(=); if 𝑋 is a theory of row types one obtains

row type inference; if 𝑋 is a theory of subtyping one gets type inference with subtyping.

In this paper, we take a first step towards such a constraint-parametric system, a version of

FreezeML parameterised in a constraint domain𝑋 , in the spirit of HM(𝑋). Specifically, we introduce

a constraint language for FreezeML, inspired by HM(𝑋), in which type expressions can include

arbitrary polymorphism, and which provides suitable constraints to encode type inference for

FreezeML programs. (We have not yet explored parameterising the system over the constraint

domain 𝑋 , but even adapting FreezeML to a constraint-based approach turns out to require sur-

mounting significant technical obstacles.) We also provide a deterministic stack machine for solving

these constraints (again inspired by the presentation of constraint solving for HM(𝑋) by Pottier

and Rémy). Full correctness proofs for both contributions are included in an appendix.

Formulating a suitable constraint language for FreezeML and a (provably) correct translation

and sound and complete solver involves several subtleties. Handling the freeze operator itself turns

out to be straightforward by adding a constraint that checks that the type of a variable exactly

matches an expected type. Unification of types needs to account for polymorphism occurring

anywhere in a type, and constraints need to be extended with universal quantifiers as well, in

order to deal with polymorphism in ascribed types. We also add a “monomorphism constraint” to

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:3

enforce FreezeML’s requirement that certain types are required to be monomorphic. Finally, to deal

with FreezeML’s approach to the value restriction (in which let-bindings of non-values are allowed

but not generalised) we introduce an additional constraint form to handle type inference of non-

generalisable expressions. However, the most challenging problem is to design a constraint language

and semantics that preserves the necessary invariants to ensure that FreezeML type inference

remains sound, complete, and principal: specifically, to ensure that flexible type variables occurring

in the inferred types of variables are always monomorphic, which is necessary in FreezeML to

avoid the need to “guess polymorphism” when a polymorphic type is instantiated.

Like certain other systems [Leijen 2008; Leroy and Mauny 1991; Vytiniotis et al. 2006], typing

derivations in FreezeML require principal types to be assigned to certain subterms. To the best of

our knowledge, the inference algorithm shown in this paper is the first one based on constraint

solving for such a type system, requiring similar principality conditions in the semantics of the

constraint language. Detailed proofs of correctness are provided in an appendix.

We characterise these contributions as a first step towards a longer-term goal: parameterising

FreezeML type inference over other constraint domains X. This is a natural next step for future

work, and would enable experimentation with combining FreezeML-style polymorphism with

features found in other modern type systems, such as Haskell’s type classes and families (and the

numerous libraries that rely on them), higher-kinded types, and GADTs [Vytiniotis et al. 2011],

row types as found in Links [Lindley and Cheney 2012], Koka [Leijen 2014] or Rose [Morris and

McKinna 2019], units of measure as found in F# [Kennedy 2009] and some Haskell libraries [Gundry

2015]. To summarise, in this paper we:

• present background on FreezeML (Section 2);

• introduce a constraint language inspired by Pottier and Rémy’s presentation of HM(𝑋)

and give a translation from FreezeML programs to constraints representing type inference

problems (Section 3);

• present a stack machine for solving the constraints (again inspired by Pottier and Rémy’s)

and show that it is correct, deterministic, and terminating (Section 4);

• discuss extensions (Section 5), related and future work (Section 6), and conclude (Section 7).

2 FREEZEML
In this section we summarise the syntax and typing rules of FreezeML. (We omit the dynamic

semantics, given by elaboration into System F [Emrich et al. 2020], as it is not relevant to the current

paper.)

Lists as sets. We write �̃� for a (possibly empty) set {𝑋1, . . . , 𝑋𝑛} and 𝑋 for a (possibly empty)

sequence 𝑋1, . . . , 𝑋𝑛 . We overload comma for use as a union / concatenation operator for sets

and sequences, writing �̃� , �̃� for the set {𝑋1, . . . , 𝑋𝑚, 𝑌1, . . . , 𝑌𝑛} where �̃� = {𝑋1, . . . , 𝑋𝑚} and �̃� =

{𝑌1, . . . , 𝑌𝑛}, and writing 𝑋,𝑌 for the sequence 𝑋1, . . . , 𝑋𝑚, 𝑌1, . . . , 𝑌𝑛 where 𝑋 = 𝑋1, . . . , 𝑋𝑚 and

�̃� = 𝑌1, . . . , 𝑌𝑛 . Given 𝑋 , we may write �̃� for the set containing the same elements. We sometimes

indicate that sets or sequences are required to be disjoint using the # relation, e.g. Δ #Δ′
means

that Δ and Δ′
are disjoint.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:4 Emrich et al.

Types. The syntax of types, instantiations, and contexts is as follows.

Type Variables 𝑎, 𝑏, 𝑐

Type Constructors 𝐷 ::=→ | × | Int | . . .
Types 𝐴, 𝐵 ::= 𝑎 | 𝐷 𝐴 | ∀𝑎.𝐴
Monotypes 𝑆,𝑇 ::= 𝑎 | 𝐷 𝑆

Guarded Types 𝐺,𝐻 ::= 𝑎 | 𝐷 𝐴

Type Instantiation 𝛿 ::= ∅ | 𝛿 [𝑎 ↦→ 𝐴]
Type Contexts Δ,Ξ ::= · | Δ, 𝑎
Term Contexts Γ ::= · | Γ, 𝑥 : 𝐴

Types are assembled from type variables (𝑎, 𝑏, 𝑐) and type constructors (𝐷). Type constructors include

at least functions (→), products (×), and base types. FreezeML uses System F types (𝐴, 𝐵), and the

only syntactic form for expressing type polymorphism is ∀𝑎.𝐴. A type is either a type variable (𝑎),

a data types (𝐷 𝐴) with type constructor 𝐷 and type arguments 𝐴, or a polymorphic type (∀𝑎.𝐴)
that binds type variable 𝑎 in type𝐴. We consider types equal modulo alpha-renaming, but not up to

reordering of quantifiers or the addition/removal of superfluous (i.e., unused) quantified variables.

For example, the following types are all different: ∀𝑎.∀𝑏.𝑎 → 𝑏, ∀𝑏.∀𝑎.𝑎 → 𝑏, ∀𝑎.∀𝑏.∀𝑐.𝑎 → 𝑏.

Monotypes (𝑆,𝑇) disallow any polymorphism. Guarded types (𝐺,𝐻) disallow polymorphism at the

top-level. A type instantiation (𝛿) maps type variables to types. Unlike traditional presentations of

ML, we explicitly track type variables in a type context (Δ). By convention we reserve Ξ for flexible

type contexts which we will not need until we treat constraints in Section 3. Term contexts (Γ)
ascribe types to term variables. Contexts are unordered and duplicates are disallowed. As such, we

will frequently take advantage of the fact that a type context Δ is a set of type variables 𝑎 and use

both notations interchangeably. This means that we impose the same disjointness conditions when

writing Δ,Δ′
.

Typing judgements. FreezeML typing judgements have the form Δ; Γ ⊢ 𝑀 : 𝐴, stating that term𝑀

has type 𝐴 in type context Δ and term context Γ. We assume standard well-formedness judgements

for types and term contexts: Δ ⊢ 𝐴 ok and Δ ⊢ Γ ok, which state that only type variables in Δ
can appear in 𝐴 and Γ respectively. Moreover, the term well-formedness judgement Δ; Γ ⊢ 𝑀 ok
states that all free term variables of 𝑀 appear in Γ and type annotations are well-formed. This

judgement also implements the scoping rules of FreezeML, where certain let bindings bring type

variables in scope such that they become available in type annotations [Emrich et al. 2020]. The

scoping behaviour interacts with the value restriction adopted by FreezeML, we therefore introduce

Δ; Γ ⊢ 𝑀 ok formally when discussing let bindings later in this section.

The typing rules are given in Fig. 1. As usual, in these rules we implicitly assume that types and

term contexts are well-formed with respect to the type context and that the term is well-formed

with respect to the type and term context (i.e., Δ; Γ ⊢ 𝑀 ok). In the following running examples, we

assume that the function id is in scope and has type ∀𝑎.𝑎 → 𝑎.

Variables and instantiation. A frozen variable (⌈𝑥⌉) can only have the exact type as given by the

term environment Γ (rule VarFrozen). This means meaning that the only type of ⌈id⌉ is ∀𝑎.𝑎 → 𝑎.

In contrast, plain variables (𝑥) can be instantiated, as in algorithmic presentations of ML (rule

VarPlain). In fact, plain variables are the only terms in FreezeML that eliminate polymorphic

types. This means that if we have Γ(𝑥) = ∀𝑎.𝐻 , then the possible types of 𝑥 are all results of

instantiating all 𝑎 in 𝐻 , using arbitrarily polymorphic types. Potential nested quantifiers inside 𝐻

are not instantiated, however. As a result, for any well-formed 𝐵, the type 𝐵 → 𝐵 is a possible type

of id, whereas ∀𝑎.𝑎 → 𝑎 is not.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:5

Δ; Γ ⊢ 𝑀 : 𝐴

VarFrozen

𝑥 : 𝐴 ∈ Γ

Δ; Γ ⊢ ⌈𝑥⌉ : 𝐴

VarPlain

𝑥 : ∀𝑎.𝐻 ∈ Γ Δ ⊢ 𝛿 : 𝑎 ⇒★ ·
Δ; Γ ⊢ 𝑥 : 𝛿 (𝐻)

App

Δ; Γ ⊢ 𝑀 : 𝐴 → 𝐵 Δ; Γ ⊢ 𝑁 : 𝐴

Δ; Γ ⊢ 𝑀 𝑁 : 𝐵

LamPlain

Δ; (Γ, 𝑥 : 𝑆) ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ 𝜆𝑥.𝑀 : 𝑆 → 𝐵

LamAnn

Δ; (Γ, 𝑥 : 𝐴) ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ 𝜆(𝑥 : 𝐴).𝑀 : 𝐴 → 𝐵

LetPlain

𝑎 = ftv(𝐴′) − Δ
(Δ, 𝑎, 𝑀,𝐴′) ⇕ 𝐴 (Δ, 𝑎); Γ ⊢ 𝑀 : 𝐴′ Δ; (Γ, 𝑥 : 𝐴) ⊢ 𝑁 : 𝐵 principal(Δ, Γ, 𝑀, 𝑎,𝐴′)

Δ; Γ ⊢ let 𝑥 = 𝑀 in 𝑁 : 𝐵

LetAnn

(𝑎,𝐴′) = split(𝐴,𝑀) (Δ, 𝑎); Γ ⊢ 𝑀 : 𝐴′ Δ; (Γ, 𝑥 : 𝐴) ⊢ 𝑁 : 𝐵

Δ; Γ ⊢ let (𝑥 : 𝐴) = 𝑀 in 𝑁 : 𝐵

Fig. 1. FreezeML Typing Rules.

Formally, theVarPlain typing rule relies on an instantiation 𝛿 . Each instantiation is parameterised

by a restriction1 𝑅 which can be either monomorphic (•) or polymorphic (★), indicating whether

type variables may be substituted with monotypes or arbitrary types. The instantiation judgement

Δ ⊢ 𝛿 : Δ′ ⇒𝑅 Δ′′
states that instantiation 𝛿 instantiates type variables in Δ′

with types subject to

restriction 𝑅 using the type context Δ,Δ′′
. Variables in Δ are considered to be mapped to themselves.

This means that if 𝑅 is ★, then for all 𝑎 ∈ Δ′
, 𝛿 (𝑎) must be a well-formed type in context Δ,Δ′′

,

which may therefore be arbitrarily polymorphic. Otherwise, if 𝑅 is •, then each such 𝛿 (𝑎) must

be a monomorphic type. Note that due to all variables 𝑏 ∈ Δ being mapped to themselves, 𝛿 (𝑏) is
always a (monomorphic) well-formed type in context Δ,Δ′′

for all such 𝑏.

Intuitively, the variables in Δ correspond to those appearing in the surrounding context, whereas

Δ′
corresponds to variables being instantiated and Δ′′

contains new type variables appearing in the

instantiation. In VarPlain, the Δ′′
environment is empty, but in the principal operation discussed

below, Δ′′
need not be empty. In order for this interpretation to make sense the judgement has an

implicit precondition that Δ′
#Δ and Δ′′

#Δ. It is defined as follows.

Δ ⊢ 𝛿 : Δ′ ⇒𝑅 Δ′′

Δ ⊢ ∅ : · ⇒𝑅 Δ′
Δ ⊢ 𝛿 : Δ′ ⇒𝑅 Δ′′ Δ,Δ′′ ⊢𝑅 𝐴 ok

Δ ⊢ 𝛿 [𝑎 ↦→ 𝐴] : (Δ′, 𝑎) ⇒𝑅 Δ′′

We write Δ ⊢𝑅 𝐴 ok for the well-formedness judgement for types. It is standard except for the

presence of 𝑅; if 𝑅 is • then Δ ⊢• 𝐴 only holds if 𝐴 is a monotype 𝑆 . In other words, the judgement

enforces the restriction 𝑅, where any well-formed type satisfies the restriction ★. Therefore, the

well-formedness judgement Δ ⊢ 𝐴 ok introduced earlier is a shorthand for Δ ⊢★ 𝐴 ok.

1
Emrich et al. [2020] called these kinds, but we prefer to avoid potential confusion with other uses of this overloaded term.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:6 Emrich et al.

Functions. Function applications (𝑀 𝑁) are standard and oblivious to polymorphism. The pa-

rameter type 𝐴 of the function 𝑀 must exactly match that of the argument 𝑁 , where 𝐴 may be

arbitrarily polymorphic. In particular, ⌈𝑖𝑑⌉ 3 is ill-typed because ⌈𝑖𝑑⌉’s type ∀𝑎.𝑎 → 𝑎 is not a

function type. Conversely, id ⌈id⌉ has type ∀𝑏.𝑏 → 𝑏. The first occurrence of id is instantiated, by

picking the type ∀𝑏.𝑏 → 𝑏 of ⌈id⌉ for the quantified type variable. This showcases the impredicative

nature of FreezeML, with alpha-renaming performed for the sake of clarity.

Plain (i.e., unannotated) lambda abstractions (𝜆𝑥.𝑀) restrict the domain to be monomorphic. This

is a simple way to keep type inference tractable, in line with other systems [Leijen 2008; Serrano

et al. 2018]. Annotated lambda abstractions (𝜆(𝑥 : 𝐴).𝑀) allow the domain to be polymorphic, at

the cost of a type annotation. As a result, the example term 𝜆𝑓 .𝑓 𝑓 given in the introduction is

rejected in FreezeML, unless 𝑓 is annotated with an appropriate type. Writing 𝜆(𝑓 : ∀𝑎.𝑎 → 𝑎).𝑓 𝑓

yields a function of type (∀𝑎.𝑎 → 𝑎) → (𝐵 → 𝐵) for any well-formed 𝐵. The return types of both

forms of lambda abstractions may be arbitrarily polymorphic: both 𝜆(𝑓 : ∀𝑎.𝑎 → 𝑎).𝑓 ⌈𝑓 ⌉ and
𝜆𝑥.⌈id⌉ yield functions with polymorphic return types.

Principality. The LetPlain rule has a principality side condition that requires that the type

inferred for 𝑥 is a principal one. Terms cannot arbitrarily be generalised in FreezeML while retaining

typability. The term id has type𝐴 → 𝐴 for any type𝐴, and in particular 𝑎 → 𝑎 for any type variable

𝑎. However, it does not have type ∀𝑎.𝑎 → 𝑎. As in System F, there is no direct relationship between

the types ∀𝑎.𝑎 → 𝑎 and 𝐴 → 𝐴 in FreezeML; generalisation only happens when a let-bound

generalised value is encountered, and instantiation only happens if triggered by a plain variable

occurrence.

The fact that FreezeML typing judgements carry type contexts specifying all in-scope type

variables makes it possible to characterise principal types without universally quantifying additional

type variables. Principal types are always given in their context Δ; Γ and may use free type variables

not present in Δ. For example, the principal types of term id in the context Δ; Γ are exactly the types

𝑏 → 𝑏 for any 𝑏 ∉ Δ. This presentation is syntax-directed, in contrast to declarative presentations

of ML that allow generalisation at any point, and would typically refer to the type scheme ∀𝑎.𝑎 → 𝑎

(not to be confused with the corresponding System F type) as the principal type of id.
We formalise the notion of principal type using the predicate principal(Δ, Γ, 𝑀,Δ′, 𝐴′). It first

asserts that 𝐴′
is a possible type of𝑀 in the context Δ,Δ′

; Γ, where Δ′
includes all type variables of

𝐴′
not in Δ. A minimality condition must also be satisfied: any other possible type of 𝑀 can be

obtained by instantiating the variables in Δ′
, possibly using some new type variables in context

Δ′′
, but (crucially) not instantiating any of those in Δ. Formally, a principal type of𝑀 in the context

of Δ and Γ is any pair (Δ′, 𝐴′) such that principal(Δ, Γ, 𝑀,Δ′, 𝐴′) holds. This is unique up to safe

renaming of the variables in Δ′
(that is, avoiding already-known variables in Δ) and the occurrence

of superfluous variables in Δ′
(i.e. variables not actually occuring in 𝐴′

).
2
Given a particular 𝐴′

we can recover Δ′
, so we say the principal type to refer to a particular 𝐴′

when Δ′
is clear from

context.

principal(Δ, Γ, 𝑀,Δ′, 𝐴′) =
Δ,Δ′

; Γ ⊢ 𝑀 : 𝐴′
and

(for all Δ′′, 𝐴′′ | if Δ,Δ′′
; Γ ⊢ 𝑀 : 𝐴′′

then there exists 𝛿 such that

Δ ⊢ 𝛿 : Δ′ ⇒★ Δ′′
and 𝛿 (𝐴′) = 𝐴′′)

2
We could impose minimality of Δ′

and Δ′′
in the definition of principal, but any superfluous variables in either context

simply have no effect.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:7

Remark 1 (Abuse of notation). Notice that the definition of principal refers to typing derivations
in the “if” part of the condition. The reader may be concerned about whether the typing judgement
is well-defined given that it appears in a negative position in the definition of principal. As Emrich
et al. [2020] explain we can see that the definition is nevertheless well founded by indexing by untyped
terms or the height of derivation trees. Likewise, proofs involving typing derivations are typically by
induction on 𝑀 rather than by rule induction. Although it is a slight abuse of notation, we prefer
to present the typing rules using inference rule notation for ease of comparison with other systems.
Formally however the rules in Figure 1 are implications that happen to hold of the typing relation, not
an inductive definition of it. We refer to the extended version of Emrich et al. [2020] for the precise
definition.

Plain let bindings. Following ML, FreezeML adopts a syntactic value restriction [Wright 1995],

distinguishing two subcategories of terms.

Values Val ∋ 𝑉 ,𝑊 ::= ⌈𝑥⌉ | 𝑥 | 𝜆𝑥.𝑀 | 𝜆(𝑥 : 𝐴).𝑀 | let 𝑥 = 𝑉 in𝑊 | let (𝑥 : 𝐴) = 𝑉 in𝑊

Guarded Values GVal ∋ 𝑈 ::= 𝑥 | 𝜆𝑥.𝑀 | 𝜆(𝑥 : 𝐴) .𝑀 | let 𝑥 = 𝑉 in 𝑈 | let (𝑥 : 𝐴) = 𝑉 in 𝑈

Values disallow applications. Guarded values disallow frozen variables, and thus must have guarded

type.
3

Plain let bindings (let 𝑥 = 𝑀 in 𝑁) generalise – subject to the value restriction – the principal

type 𝐴′
of 𝑀 and ascribe it to 𝑥 . Here, the predicate principal is used to determine the type 𝐴′

,

using fresh variables 𝑎. Note that the free type variable operator ftv returns a sequence rather than
a set when applied to a type, returning variables in the order of their appearance. This reflects the

fact that the order of quantifiers matters in FreezeML.

If𝑀 is a guarded value, the type 𝐴 of 𝑥 is then ∀𝑎.𝐴′
, performing the actual generalisation step.

This is achieved using the ⇕ auxiliary judgement that enforces the value restriction, which we

return to shortly.

Generalising the principal type 𝐴′
rather than an arbitrary type of 𝑀 is necessary to ensure

the existence of principal types in the overall system [Emrich et al. 2020]. First, recall that a

principal type of an expression 𝑀 with respect to Δ and Γ is formally a pair (Δ′, 𝐴′) such that

principal(Δ, Γ, 𝑀,Δ′, 𝐴′) hold. Generalisation then quantifies the variables in Δ′
yielding a type

∀𝑎1, . . . , 𝑎𝑛 .𝐴 where 𝑎1, . . . , 𝑎𝑛 are in the order in which the variables first appear in 𝐴′
. Now

consider the term

let 𝑓 = 𝜆𝑥 .𝑥 in ⌈𝑓 ⌉
which is an example of FreezeML’s “explicit generalisation” operation $𝑉 ≡ let 𝑓 = 𝑉 in ⌈𝑓 ⌉ and
allows capturing the generalised principal type of a value. The principal type of 𝜆𝑥 .𝑥 is 𝑎 → 𝑎

(provided 𝑎 ∉ Δ), and by generalising this we obtain ∀𝑎.𝑎 → 𝑎 as the type of 𝑓 , which then becomes

the type of the overall let term due to 𝑓 being frozen in its body. Note that the type ∀𝑎.𝑎 → 𝑎 is

not the principal type of 𝜆𝑥 .𝑥 (formally: no pair (Δ′′,∀𝑎.𝑎 → 𝑎) is a principal type). If the typing
rule permitted assigning other, non-principal, types to 𝜆𝑥.𝑥 , such as Int → Int, then generalisation

would have no effect. This would make Int → Int another possible type of the overall let term (as

freezing a variable with a guarded or monomorphic type has no effect). However, this would mean

that the overall let term has no principal type. The two types Int → Int and ∀𝑎.𝑎 → 𝑎 don’t have a

shared more general type in FreezeML, as discussed earlier.

As mentioned before, the auxiliary judgement (Δ, 𝑎, 𝑀,𝐴′) ⇕ 𝐴 enforces the value restriction.

Given Δ, 𝑎 ⊢ 𝑀 : 𝐴′
, the judgement determines 𝐴 to be ∀𝑎.𝐴′

if𝑀 is a guarded value. Otherwise, 𝐴

is obtained from 𝐴′
by instantiating all of 𝑎 with monotypes.

3
The only guarded value with a top-level polymorphic type is a plain variable 𝑥 of type ∀𝑎1, . . . , 𝑎𝑛 .𝑎𝑖 . This special case is
handled gracefully by FreezeML.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:8 Emrich et al.

(Δ, 𝑎, 𝑀,𝐴′) ⇕ 𝐴

𝑀 ∈ GVal

(Δ, 𝑎, 𝑀,𝐴′) ⇕ ∀𝑎.𝐴′
Δ′ = 𝑎 Δ ⊢ 𝛿 : Δ′ ⇒• · 𝑀 ∉ GVal

(Δ, 𝑎, 𝑀,𝐴′) ⇕ 𝛿 (𝐴′)

As is well-known, type inference for System F is undecidable, even with nontrivial restric-

tions [Pfenning 1993; Wells 1994]. The condition to instantiate monomorphically is one of several

design choices in FreezeML’s to keep type inference decidable and tractable. Along with the

monomorphic restriction on the arguments to plain lambda abstractions, FreezeML ensures that

polymorphism can only ever appear in the term context if it was written explicitly by a programmer

in a type annotation or inferred as a principal type of a plain let binding.

Annotated let bindings. Annotated let bindings (let (𝑥 : 𝐴) = 𝑀 in 𝑁) also generalise, subject to

the value restriction, but ascribe the type 𝐴 to 𝑥 . The splitting operation split(𝐴,𝑀) enforces the
value restriction for annotated let terms. It decomposes 𝐴 into a collection of top-level quantifiers

and another type. The first component of the returned pair is maximal if 𝑀 is a guarded value and

empty otherwise due to the value restriction.

split(∀𝑎.𝐻,𝑀) =
{
(𝑎, 𝐻) if𝑀 ∈ GVal
(·,∀𝑎.𝐻) otherwise

It is also important to note that in the generalising case (i.e. when the let-bound expression is a

guarded value 𝑈), the top-level quantifiers in type annotations are in scope and can be used in 𝑈

(e.g. in other type annotations). This is reflected in the split operation which returns these variables

in its first argument. In contrast, in the non-generalising case where𝑀 is not a guarded value, these

variables are not in scope in𝑀 . Since𝑀 ’s type is not being generalised, the only way it can end up

with a polymorphic type is by referencing (frozen) variables with polymorphic types.

Note that this scoping behaviour also needs to be reflected in the termwell-formedness judgement

Δ; Γ ⊢ 𝑀 ok mentioned earlier. To this end, the well-formedness rule for annotated let bindings

also uses the split operation, as shown in Figure 2. The judgement Δ; Γ ⊢ 𝑀 ok only requires the

presence of a binding for all free term variables, but ignores the associated types. As a result, the

rules for unannotated lambda functions and let bindings add arbitrary types 𝐴 to the the term

context.

Δ; Γ ⊢ 𝑀 ok

𝑥 ∈ Γ

Δ; Γ ⊢ ⌈𝑥⌉ ok
𝑥 ∈ Γ

Δ; Γ ⊢ 𝑥 ok

Δ; (Γ, 𝑥 : 𝐴) ⊢ 𝑀 ok

Δ; Γ ⊢ 𝜆𝑥.𝑀 ok

Δ ⊢ 𝐴 ok
Δ; (Γ, 𝑥 : 𝐴) ⊢ 𝑀 ok

Δ; Γ ⊢ 𝜆(𝑥 : 𝐴).𝑀 ok

Δ; Γ ⊢ 𝑀 ok
Δ; Γ ⊢ 𝑁 ok

Δ; Γ ⊢ 𝑀 𝑁 ok

Δ; Γ ⊢ 𝑀 ok Δ; (Γ, 𝑥 : 𝐴) ⊢ 𝑁 ok

Δ; Γ ⊢ let 𝑥 = 𝑀 in 𝑁 ok

Δ ⊢ 𝐴 ok (Δ′, 𝐴′) = split(𝐴,𝑀) (Δ,Δ′); Γ ⊢ 𝑀 ok Δ; (Γ, 𝑥 : 𝐴) ⊢ 𝑁 ok

Δ; Γ ⊢ let (𝑥 : 𝐴) = 𝑀 in 𝑁 ok

Fig. 2. Well-formedness of terms.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:9

3 CONSTRAINT LANGUAGE
In this section, we present the constraint language and a function for generating typing constraints

from terms. Following Pottier and Rémy [2005], our constraint language uses both term variables

and type variables. Following Emrich et al. [2020], we distinguish rigid and flexible type variables.

The former arise in the object language from universal quantification. The latter are used to

represent unknown types.

The syntax and satisfiability judgement for constraints is given in Figure 3. The judgement

Δ;Ξ; Γ;𝛿 ⊢ 𝐶 states that in rigid type context Δ, flexible type context Ξ, term context Γ, using
instantiation 𝛿 , the constraint 𝐶 is satisfied. Note that rigid and flexible type contexts follow the

same grammar, but we use the convention that Δ is used for rigid variables, whereas Ξ contains

flexible ones. Therefore, using both environments in the judgement allows us to distinguish the

flexible variables in scope from those that are rigid. In the judgement Δ;Ξ; Γ;𝛿 ⊢ 𝐶 we implicitly

assume that the term environment Γ is well-formed and contains no flexible variables (Δ ⊢ Γ ok)
and that type instantiations close over the flexible type variables (Δ ⊢ 𝛿 : Ξ ⇒★ ·).
To support composition of constraints we start with the always true constraint (true) and

conjunction (𝐶1∧𝐶2). The equality constraint𝐴 ∼ 𝐵 asserts that𝐴 and 𝐵 are equivalent. The frozen

constraint ⌈𝑥 : 𝐴⌉ asserts that 𝑥 has type 𝐴. The instance constraint 𝑥 ⪯ 𝐴 asserts that top-level

quantifiers of 𝑥 ’s type can be instantiated to yield 𝐴. The universal constraint ∀𝑎.𝐶 binds rigid type

variable 𝑎 in 𝐶 . The existential constraint ∃𝑎.𝐶 binds flexible type variable 𝑎 in 𝐶 . Monomorphism

constraints mono(𝑎) assert that the flexible variable 𝑎 must only be instantiated with monotypes.

The definition constraint def (𝑥 : 𝐴) in 𝐶 binds term variable 𝑥 in 𝐶 . (It also includes a side-

constraint which we will return to shortly.) The polymorphic let constraint let★ 𝑥 = ⊓𝑎.𝐶1 in 𝐶2

and monomorphic let constraint let• 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 are used to bind 𝑥 in 𝐶2, subject to the

restrictions imposed on 𝑎 in 𝐶1. The two forms differ in how the type of 𝑥 is obtained from solving

𝐶1 for 𝑎: either by generalisation (★) or monomorphic instantiation (•). These constraints are
somewhat involved, so we defer a full explanation until we present the constraint-generation

function.

We consider constraints equivalent modulo alpha-renaming of all binders, of both type and term

variables.

3.1 Constraint generation
We now introduce the function J𝑀 : 𝐴K, which translates a term𝑀 and type 𝐴 to a constraint. The

only free type variables in the resulting constraint are those appearing in𝐴 and type annotations in

𝑀 . Assuming that𝑀 is well-formed under Δ and Γ (Δ; Γ ⊢ 𝑀 ok) and that 𝐴 is well-formed under

Δ,Ξ, the constraint J𝑀 : 𝐴K is well-formed under Δ,Ξ and Γ (Δ;Ξ; Γ ⊢ J𝑀 : 𝐴K ok). The latter
judgement is given in Figure 4. Note that this judgement ignores the types in Γ and uses it to track

bound term variables, just like the well-formedness judgement on terms introduced in Section 2.

If Ξ is empty (i.e., 𝐴 contains no flexible variables) then this constraint is satisfiable in context

Δ; Γ if and only if𝑀 has type 𝐴 in context Δ; Γ. However, if 𝐴 does contain flexible variables, then

the models of J𝑀 : 𝐴K are exactly those that instantiate 𝐴 to valid types of𝑀 . We formalise these

properties in Section 3.4. Concretely, we perform type inference for𝑀 by choosing 𝐴 to be a single

flexible variable.

The function J−K is defined in Figure 5.

Frozen variables and plain variables generate the corresponding atomic constraints. An applica-

tion generates an existential constraint that binds a fresh flexible type variable for the argument

type. A plain lambda abstraction generates a constraint that binds fresh flexible type variables for

argument and return types and uses a definition constraint to bind the argument in the constraints

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:10 Emrich et al.

𝐶 ::= true | 𝐶 ∧𝐶 | 𝐴 ∼ 𝐵 | ⌈𝑥 : 𝐴⌉ | 𝑥 ⪯ 𝐴 | ∀𝑎.𝐶 | ∃𝑎.𝐶 | mono(𝑎)
| def (𝑥 : 𝐴) in 𝐶 | let★ 𝑥 = ⊓𝑎.𝐶 in 𝐶 | let• 𝑥 = ⊓𝑎.𝐶 in 𝐶

Sem-True

Δ;Ξ; Γ;𝛿 ⊢ true

Sem-And

Δ;Ξ; Γ;𝛿 ⊢ 𝐶1 Δ;Ξ; Γ;𝛿 ⊢ 𝐶2

Δ;Ξ; Γ;𝛿 ⊢ 𝐶1 ∧𝐶2

Sem-Eqiv

(Δ,Ξ) ⊢★ 𝐴 ok (Δ,Ξ) ⊢★ 𝐵 ok
𝛿 (𝐴) = 𝛿 (𝐵)

Δ;Ξ; Γ;𝛿 ⊢ 𝐴 ∼ 𝐵

Sem-Freeze

Γ(𝑥) = 𝛿 (𝐴)
Δ;Ξ; Γ;𝛿 ⊢ ⌈𝑥 : 𝐴⌉

Sem-Instance

Δ′ = 𝑎 Δ ⊢ 𝛿 ′ : Δ′ ⇒★ ·
Γ(𝑥) = ∀𝑎.𝐻 𝛿 ′(𝐻) = 𝛿 (𝐴)

Δ;Ξ; Γ;𝛿 ⊢ 𝑥 ⪯ 𝐴

Sem-Forall

(Δ, 𝑎);Ξ; Γ;𝛿 ⊢ 𝐶
Δ;Ξ; Γ;𝛿 ⊢ ∀𝑎.𝐶

Sem-Exists

Δ; (Ξ, 𝑎); Γ;𝛿 [𝑎 ↦→ 𝐴] ⊢ 𝐶
Δ;Ξ; Γ;𝛿 ⊢ ∃𝑎.𝐶

Sem-Mono

Δ ⊢• 𝛿 (𝑎) ok
Δ;Ξ; Γ;𝛿 ⊢ mono(𝑎)

Sem-Def

for all 𝑎 ∈ ftv(𝐴) − Δ | Δ;Ξ; Γ;𝛿 ⊢ mono(𝑎)
Δ;Ξ; (Γ, 𝑥 : 𝛿𝐴);𝛿 ⊢ 𝐶

Δ;Ξ; Γ;𝛿 ⊢ def (𝑥 : 𝐴) in 𝐶

Sem-LetPoly

mostgen(Δ, (Ξ, 𝑎), Γ,𝐶1,Δm, 𝛿m)
Δo = ftv(𝛿m (Ξ)) − Δ 𝑏 = ftv(𝛿m (𝑎)) − Δ,Δo

Δ ⊢ 𝛿 ′ : Δo ⇒• · 𝐴 = 𝛿 ′(𝛿m (𝑎))
(Δ, ˜𝑏); (Ξ, 𝑎); Γ;𝛿 [𝑎 ↦→ 𝐴] ⊢ 𝐶1 Δ;Ξ; (Γ, 𝑥 : ∀𝑏.𝐴);𝛿 ⊢ 𝐶2

Δ;Ξ; Γ;𝛿 ⊢ let★ 𝑥 = ⊓𝑎.𝐶1 in 𝐶2

Sem-LetMono

mostgen(Δ, (Ξ, 𝑎), Γ,𝐶1,Δm, 𝛿m)
Δ ⊢ 𝛿 ′ : Δm ⇒• · 𝐴 = 𝛿 ′(𝛿m (𝑎))

Δ; (Ξ, 𝑎); Γ;𝛿 [𝑎 ↦→ 𝐴] ⊢ 𝐶1 Δ;Ξ; (Γ, 𝑥 : 𝐴);𝛿 ⊢ 𝐶2

Δ;Ξ; Γ;𝛿 ⊢ let• 𝑥 = ⊓𝑎.𝐶1 in 𝐶2

Fig. 3. Satisfiability judgement for constraints.

generated for the body of the lambda abstraction. An annotated lambda abstraction generates

a similar constraint to a plain lambda abstraction, but the argument type is fixed by the type

annotation. The remaining four cases of J−K account for the four different combinations arising

from the two choices between plain or annotated and between guarded value or not. An annotated

let binding let (𝑥 : 𝐵) = 𝑀 in 𝑁 generates a conjunction of constraints: one for𝑀 and the other

for 𝑁 . Following the definition of split in the LetAnn rule in Figure 1, if𝑀 is a guarded value𝑈

then its type can be generalised to obtain 𝐵 as witnessed by the universal constraints. Notice in

particular that the quantified type variables introduced in the annotation are in scope in𝑈 in the

sub-constraint ∀𝑎.J𝑈 : 𝐻K. Otherwise the types must match on the nose without any generalisation,

and in this case the quantified variables are not in scope in𝑀 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:11

Δ;Ξ; Γ ⊢ true ok
𝑎 ∈ (Δ,Ξ)

Δ;Ξ; Γ ⊢ mono(𝑎) ok
Δ;Ξ; Γ ⊢ 𝐶1 ok Δ;Ξ; Γ ⊢ 𝐶2 ok

Δ;Ξ; Γ ⊢ 𝐶1 ∧𝐶2 ok

Δ; (Ξ, 𝑎); Γ ⊢ 𝐶 ok

Δ;Ξ; Γ ⊢ ∃𝑎.𝐶 ok

(Δ, 𝑎);Ξ; Γ ⊢ 𝐶 ok

Δ;Ξ; Γ ⊢ ∀𝑎.𝐶 ok

(Δ,Ξ) ⊢ 𝐴 ok (Δ,Ξ) ⊢ 𝐵 ok

Δ;Ξ; Γ ⊢ 𝐴 ∼ 𝐵 ok

𝑥 ∈ Γ (Δ,Ξ) ⊢ 𝐴 ok

Δ;Ξ; Γ ⊢ 𝑥 ⪯ 𝐴 ok

𝑥 ∈ Γ (Δ,Ξ) ⊢ 𝐴 ok

Δ;Ξ; Γ ⊢ ⌈𝑥 : 𝐴⌉ ok

(Δ,Ξ) ⊢ 𝐴 ok Δ;Ξ; (Γ, 𝑥 : 𝐴) ⊢ 𝐶 ok

Δ;Ξ; Γ ⊢ def (𝑥 : 𝐴) in 𝐶 ok

Δ; (Ξ, 𝑎); Γ ⊢ 𝐶1 ok
Δ;Ξ; (Γ, 𝑥 : 𝐴) ⊢ 𝐶2 ok

Δ;Ξ; Γ ⊢ let𝑅 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 ok

Fig. 4. Well-formedness of constraints.

J⌈𝑥⌉ : 𝐴K = ⌈𝑥 : 𝐴⌉
J𝑥 : 𝐴K = 𝑥 ⪯ 𝐴

J𝑀 𝑁 : 𝐴K = ∃𝑎1 .(J𝑀 : 𝑎1 → 𝐴K ∧ J𝑁 : 𝑎1K)
J𝜆𝑥.𝑀 : 𝐴K = ∃𝑎1, 𝑎2 .(𝑎1 → 𝑎2 ∼ 𝐴 ∧ def (𝑥 : 𝑎1) in J𝑀 : 𝑎2K)

J𝜆(𝑥 : 𝐵) .𝑀 : 𝐴K = ∃𝑎1 .𝐵 → 𝑎1 ∼ 𝐴 ∧ def (𝑥 : 𝐵) in J𝑁 : 𝑎1K
Jlet (𝑥 : ∀𝑎.𝐻) = 𝑈 in 𝑁 : 𝐴K = (∀𝑎.J𝑈 : 𝐻K) ∧ def (𝑥 : ∀𝑎.𝐻) in J𝑁 : 𝐴K

Jlet (𝑥 : 𝐵) = 𝑀 in 𝑁 : 𝐴K = J𝑀 : 𝐵K ∧ def (𝑥 : 𝐵) in J𝑁 : 𝐴K (if𝑀 ∉ GVal)
Jlet 𝑥 = 𝑈 in 𝑁 : 𝐴K = let★ 𝑥 = ⊓𝑎.J𝑈 : 𝑎K in J𝑁 : 𝐴K
Jlet 𝑥 = 𝑀 in 𝑁 : 𝐴K = let• 𝑥 = ⊓𝑎.J𝑀 : 𝑎K in J𝑁 : 𝐴K (if𝑀 ∉ GVal)

Fig. 5. Translation from terms to constraints.

3.2 Def constraints
The side condition in the Sem-Def rule ensures that the argument type can only be instantiated with

a monomorphic type. In general, the side condition preserves the invariant that no undetermined (or

“guessed”) polymorphism exists in the term context Γ. This is crucial to ensure the existence of most

general solutions for our constraint language. Consider the constraint def (𝑥 : 𝑎) in 𝑥 ⪯ 𝑏 ∧ 𝑐 ∼
(𝑎 → 𝑏) with free flexible variables 𝑎, 𝑏, 𝑐 . Without the extra condition on def constraints, different

solutions could for instance include 𝑐 ↦→ (Int → Int) or 𝑐 ↦→ ((∀𝑎.𝑎) → Int) for 𝑐 . However, there is
nomore general solution subsuming both. Note that themonomorphism condition on def constraints

does not impose the type annotation to be monomorphic itself, it only imposes conditions on free

flexible variables appearing within it. Consequently, the constraint def (𝑥 : (∀𝑎.𝑎) → 𝑏) in true
is satisfiable as long as the flexible variable 𝑏 is instantiated monomorphically. We cannot avoid

the monomorphism condition imposed on def constraints simply by using mono constraints. The

constraint mono(𝑏) ∧ def 𝑓 (𝑥 : (∀𝑎.𝑎) → 𝑏) in true would be equivalent to the previous one in

terms of its solutions, even if we dropped the monomorphism condition built into def constraints.

However, this system would exhibit the same lack of most general solutions for def constraints

discussed earlier, showing that the monomorphism condition needs to be imposed on def constraints

directly.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:12 Emrich et al.

3.3 Let constraints
Plain let bindings are translated to let constraints. A plain let binding of a guarded value let 𝑥 =

𝑈 in 𝑁 generates a polymorphic let constraint. In general, such a polymorphic let constraint

let★ 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 binds the flexible variable 𝑎 in 𝐶1, much like an existential constraint. The

type assigned to 𝑥 in 𝐶2 is then obtained by generalising type variables appearing in the solution

for 𝑎.

We make several observations motivating the overall semantics of let constraints.

Need to generalise principal solution. We first observe that let constraints require a principality
condition similar to the one imposed on plain let terms. Consider the constraint 𝐶 defined as

let 𝑥 = ⊓𝑎.∃𝑏.𝑎 ∼ (𝑏 → 𝑏) in ⌈𝑥 : 𝑐⌉, appearing in a rigid context Δ. It has a single free type

variable 𝑐 and we refer to its first subconstraint (i.e., ∃𝑏.𝑎 ∼ (𝑏 → 𝑏)) as 𝐶1 in the following.

Allowing arbitrary solutions for 𝑎 in 𝐶1 to be generalised to yield the type for 𝑥 would lead to the

following pathological situation.

For any well-formed type 𝐴, [𝑎 ↦→ (𝐴 → 𝐴)] is a model of 𝐶1. As usual, we must not generalise

any type variables already bound in the surrounding scope, namely those variables in Δ. However,
we may generalise fresh variables appearing in 𝐴. This means that if we choose [𝑎 ↦→ (Int → Int)]
there is nothing to generalise and we have 𝑥 : (Int → Int) in 𝐶2 , whereas [𝑎 ↦→ (𝑏 ′ → 𝑏 ′)]
for some fresh 𝑏 ′ does allow us to generalise, meaning that we have 𝑥 : (∀𝑏 ′.𝑏 ′ → 𝑏 ′) in 𝐶2.

Any solution of the overall constraint must use the type of 𝑥 for 𝑐 . This leads to a problem very

similar to the one discussed for let terms in Section 2: the two solutions [𝑐 ↦→ (Int → Int)] and
[𝑐 ↦→ (∀𝑏 ′.𝑏 ′ → 𝑏 ′)] of 𝐶 would have no shared most general solution in our system.

We avoid this problem by demanding that only the most general solution for 𝑎 in 𝐶1 must be

generalised to yield the type for 𝑥 in 𝐶2. In our example, this means choosing [𝑎 ↦→ (𝑏 ′ → 𝑏 ′)],
where 𝑏 ′ is fresh, which means that in our example only [𝑐 ↦→ (∀𝑏 ′.𝑏 ′ → 𝑏 ′)] is a valid solution of

the overall let constraint.

The rule Sem-LetPoly in Figure 3 enforces this using the premisemostgen(Δ, (Ξ, 𝑎), Γ,𝐶1,Δm, 𝛿m),
which asserts that 𝛿m is the most general model of𝐶1 in the context Δ;Ξ; Γ. Here, Δm contains fresh

variables that are used in place of flexible type variables for which no further substitution/solution

is currently known. Note that this premise (and subsequently, 𝛿m) is independent from the ambient

instantiation 𝛿 ; the latter does not appear as an argument. The predicate mostgen is defined as

follows, stating that 𝛿m is a model of 𝐶1 and every other one can be obtained by refining 𝛿m by

composition.

mostgen(Δ,Ξ, Γ,𝐶,Δm, 𝛿m) =
(Δ,Δm);Ξ; Γ;𝛿m ⊢ 𝐶 and

(for all Δ′′, 𝛿 ′′ | if (Δ,Δ′′);Ξ; Γ;𝛿 ′′ ⊢ 𝐶
then there exists 𝛿 ′ such that

Δ ⊢ 𝛿 ′ : Δm ⇒★ Δ′′
and 𝛿 ′ ◦ 𝛿m = 𝛿 ′′)

The rule Sem-LetPoly then defines two subsets
4
of Δm: The variables in Δo are those appearing

in the range of 𝛿m restricted to Ξ (i.e., not considering the mapping for 𝑎 in 𝛿m). This means that

the variables in Δo are related to the outer context, namely by being part of the instantiations of

the variables Ξ in the surrounding scope.

The rule then determines the variables 𝑏 to be generalised as the flexible ones appearing freely

in 𝛿m (𝑎) (i.e., the most general solution for 𝑎) and disregarding the variables from Δo, as the latter

variables are related to the outer scope Ξ.

4
In general, Δm may contain useless variables not appearing in the codomain of 𝛿m. Otherwise, if all variables in Δm appear

in the range of 𝛿m, then Δm and 𝑏 denote a partitioning of Δm.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:13

Safe interaction with outer scope. We have discussed that the rule Sem-LetPoly forces solutions

for constraints of the form let★ 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 to use the most general solution for 𝑎 in𝐶1 – using

fresh rigid variables Δm – and quantifying over variables 𝑏 ⊆ Δm to obtain the type for 𝑥 in 𝐶2.

We now show how flexible variables from the outer scope that appear in 𝐶1 may influence the

type of 𝑥 and how we prevent this from introducing undetermined polymorphism in the term

context. Consider the constraint ∃𝑎.let★ 𝑥 = ⊓𝑏.𝑎 ∼ 𝑏 in 𝐶2 appearing in rigid context Δ. The
semantics of ∃ constraints (cf. Sem-Exists in Figure 3) necessitates choosing a type 𝐵 for 𝑎 such

that Δ ⊢ 𝐵 ok. The first subconstraint of the let constraint then equates 𝑎 and 𝑏, making any kind

of generalisation impossible when determining the type of 𝑥 (i.e., the type of 𝑥 is just 𝐵 without

further quantification). However, this means that the choice of 𝐵 influences the polymorphism of 𝑥 ,

meaning that the constraint above may introduce undetermined polymorphism in the term context

if arbitrarily polymorphic types were permitted for 𝑎. Thus we must restrict the possible choices

for 𝐵. The rule Sem-LetPoly does so by imposing a relationship between the most general solution

𝛿m (𝑎) for 𝑎 and the type 𝐴 actually chosen as the instantiation of 𝑎. In our example above, each

most general solution 𝛿m of 𝐶1 has the form [𝑎 ↦→ 𝑐, 𝑏 ↦→ 𝑐], where 𝑐 ∈ Δm. Therefore, we have

Δo = 𝑐 and 𝑏 is empty. The rule Sem-LetPoly then imposes that the actual type𝐴 for 𝑎 results from

monomorphically instantiating all non-generalisable variables in 𝛿m (𝑎) (namely, Δo). In the example

above, this means that 𝑎 (and therefore also 𝑏) must be instantiated with a monotype. Observe

that in general, 𝛿 ′(𝛿m (𝑎)) may not be a feasible choice for 𝐴 for any well-formed monomorphic

instantiation 𝛿 ′. Consider the constraint:

∃𝑎.𝑎 ∼ (Int → Int) ∧ (let★ 𝑥 = ⊓𝑏.∃𝑐.𝑎 ∼ 𝑏 ∧ 𝑎 ∼ (𝑐 → 𝑐) in 𝐶2)

Here, 𝛿 ′(𝛿m (𝑎)) may yield any type of the form 𝑆 → 𝑆 (recall that 𝑆 denotes monotypes). However,

the premise (Δ, ˜𝑏); (Ξ, 𝑎); Γ;𝛿 [𝑎 ↦→ 𝐴] ⊢ 𝐶1 of Sem-LetPoly forces𝐴 to be compatiblewith any prior

choices made by the ambient instantiation 𝛿 . In our examples, this ensures that 𝐴 = (Int → Int).

Monomorphic let constraints. To accommodate the value restriction, the function J−K translates
a plain let binding of a term 𝑀 that is not a guarded value, let 𝑥 = 𝑀 in 𝑁 , to a monomorphic

let constraint of the form let• 𝑥 = ⊓𝑎.𝐶1 in 𝐶2. The only difference between a polymorphic let

constraint and a monomorphic one is that all variables that would be generalised by the former are

instantiated monomorphically by the latter.

The rule Sem-LetMono in Figure 3 achieves this by instantiating all of Δm monomorphically to

obtain 𝐴 from 𝛿m (𝑎). An equivalent, yet slightly more verbose version of Sem-LetMono highlight-

ing the symmetry between Sem-LetPoly and Sem-LetMono could define Δo and 𝑏 just like the

former rule, and then impose Δ ⊢ 𝛿 ′ : (Δo, 𝑏) ⇒• ·. Observe that the variables in Δm − (Δo, 𝑏) are
irrelevant in Sem-LetPoly.

3.4 Metatheory
We can now formalise the relationship between terms and the constraints obtained from them.

Firstly, if𝑀 has type 𝐴, then J𝑀 : 𝑎K is satisfiable by a substitution that maps 𝑎 to 𝐴.

Theorem 1 (Constraint generation is sound with respect to the typing judgement). Let
Δ; Γ ⊢ 𝑀 : 𝐴 and 𝑎 #Δ. Then Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ J𝑀 : 𝑎K holds.

Secondly, if a constraint J𝑀 : 𝑎K is satisfied using an instantiation 𝛿 , then 𝛿 (𝑎) is a valid type for

𝑀 .

Theorem 2 (Constraint generation is complete with respect to the typing judgement).

If Δ; Γ ⊢ 𝑀 ok and Δ;𝑎; Γ;𝛿 ⊢ J𝑀 : 𝑎K, then Δ; Γ ⊢ 𝑀 : 𝛿 (𝑎).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:14 Emrich et al.

Both properties are proved by structural induction on 𝑀 ; proof details are provided in the

appendix (see supplementary material).

4 CONSTRAINT SOLVING
We present a stack machine for solving constraints in our language, similar to the HM(𝑋) solver

by Pottier and Rémy [2005]. Our machine is defined in terms of a transition relation on states of

the form (𝐹,Θ, 𝜃,𝐶), consisting of a stack 𝐹 , a restriction context Θ, a type substitution 𝜃 , and an

in-progress constraint 𝐶 , each of which we elaborate on below.

Stacks. In a state (𝐹,Θ, 𝜃,𝐶), 𝐶 denotes the constraint to be solved next.

The stack 𝐹 denotes the context in which 𝐶 appears, containing bindings for type variables

(rigid and flexible) and term variables that may appear in 𝐶 . Further, the stack indicates how to

continue after 𝐶 has been solved. Our stack machine operates on closed states, meaning that the

stack contains bindings for all free variables of 𝐶 .

Formally, stacks are built from stack frames as follows.

Frames 𝑓 ::= □ ∧𝐶 | ∀ 𝑎 | ∃ 𝑎 | let𝑅 𝑥 = ⊓𝑎.□ in 𝐶 | def (𝑥 : 𝐴)
Stacks 𝐹 ::= · | 𝐹 :: 𝑓

The different forms of stack frames directly correspond to those constraints with at least one sub-

constraint. The overall stack can then be seen as a constraint with a hole in which𝐶 is plugged. We

use holes □ in frames for constraints with two sub-constraints and store the second sub-constraint

to which we must return after solving the first one.

Restriction Contexts and Type Substitutions. The components Θ and 𝜃 of a state (𝐹,Θ, 𝜃,𝐶) encode
the unification context. Their syntax is defined as follows.

Restriction Contexts Θ ::= · | Θ, 𝑎 : 𝑅

Type Substitutions 𝜃 ::= ∅ | 𝜃 [𝑎 ↦→ 𝐴]
States 𝑠 ::= (𝐹,Θ, 𝜃,𝐶)

The restriction context Θ contains exactly the flexible variables bound by the stack 𝐹 and stores

the restriction imposed on each such variable. Again, restrictions 𝑅 determine which types a flexible

variable may be unified or instantiated with: monomorphic only (•) or arbitrary polymorphic types

(★).

Type substitutions 𝜃 are similar to type instantiations 𝛿 . However, they apply only to flexible

variables, their codomain may contain flexible variables, and must respect the restriction imposed

on each individual variable in the domain. Note that this is in contrast to instantiations, where

Δ ⊢ 𝛿 : Δ′ ⇒𝑅 Δ′′
fixes a single restriction 𝑅 for all variables in the domain of 𝛿 .

To this end, we formalise what it means for a type 𝐴 to obey a restriction 𝑅 using the judgement

Δ;Θ ⊢𝑅 𝐴 ok, shown in Figure 6. Rigid variables are monomorphic. Flexible variables have their

restriction determined by the restriction context. The restriction of a data type is determined

inductively. A universally quantified type is polymorphic. Every monomorphic type is also a

polymorphic type. Observe that the well-formedness judgement Δ ⊢𝑅 𝐴 ok used in Section 3 can

now be considered as a shorthand for Δ; · ⊢𝑅 𝐴 ok.
We can now formally state what it means for a substitution 𝜃 to be well-formed, mapping flexible

variables in Θ′
to well-formed types over variables from Δ,Θ via the judgement Δ ⊢ 𝜃 : Θ′ ⇒ Θ,

which is also shown in Figure 6. As for substitutions, we additionally require that Θ #Δ and Θ′
#Δ

(however, Θ and Θ′
need not be disjoint). In summary, this means that in any solver state, the

substitution 𝜃 contains the current knowledge about unification variables, respecting the restrictions

imposed by Θ.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:15

Δ;Θ ⊢𝑅 𝐴 ok

𝑎 ∈ Δ

Δ;Θ ⊢• 𝑎
𝑎 : 𝑅 ∈ Θ

Δ;Θ ⊢𝑅 𝑎

arity(𝐷) = 𝑛

Δ;Θ ⊢𝑅 𝐴1 ok
· · ·

Δ;Θ ⊢𝑅 𝐴𝑛 ok

Δ;Θ ⊢𝑅 𝐷 𝐴 ok

(Δ, 𝑎);Θ ⊢𝑅 𝐴 ok

Δ;Θ ⊢★ ∀𝑎.𝐴 ok

Δ;Θ ⊢• 𝐴 ok

Δ;Θ ⊢★ 𝐴 ok

Δ ⊢ 𝜃 : Θ′ ⇒ Θ

Δ ⊢ ∅ : · ⇒ Θ

Δ ⊢ 𝜃 : Θ′ ⇒ Θ Δ;Θ ⊢𝑅 𝐴 ok

Δ ⊢ 𝜃 [𝑎 ↦→ 𝐴] : (Θ′, 𝑎 : 𝑅) ⇒ Θ

Fig. 6. Well-formedness of types and substitutions.

We write bv(𝐹) and btv(𝐹) for the term variables and type variables (flexible or rigid) bound by

𝐹 , respectively. Moreover, we write rc(𝐹), fc(𝐹), and tc(𝐹) for the rigid context, flexible context,

and term context synthesised from a stack 𝐹 , respectively. The latter operators consider ∀ frames

(rc(𝐹)), let and ∃ frames (fc(𝐹)), and def frames (tc(𝐹)), as shown in Figure 7.

rc(𝐹) =

· if 𝐹 = ·
rc(𝐹 ′), 𝑎 if 𝐹 = 𝐹 ′

:: ∀𝑎
rc(𝐹 ′) otherwise (𝐹 = 𝐹 ′

:: _)
fc(𝐹) =

· if 𝐹 = ·
fc(𝐹 ′), 𝑎 if 𝐹 = 𝐹 ′

:: ∃𝑎 or

𝐹 = 𝐹 ′
:: let𝑅 𝑥 = ⊓𝑎.□ in 𝐶2

fc(𝐹 ′) otherwise (𝐹 = 𝐹 ′
:: _)

tc(𝐹) =

· if 𝐹 = ·
tc(𝐹 ′), (𝑥 : 𝐴) if 𝐹 = 𝐹 ′

:: def (𝑥 : 𝐴)
tc(𝐹 ′) otherwise (𝐹 = 𝐹 ′

:: _)

Fig. 7. Extracting components from stacks.

In order for a state (𝐹,Θ, 𝜃,𝐶) to be well-formed (⊢ (𝐹,Θ, 𝜃,𝐶) ok), we require that rc(𝐹) ⊢
𝜃 : Θ ⇒ Θ, that 𝜃 is idempotent, that 𝐶 is well-formed (rc(𝐹); fc(𝐹); tc(𝐹) ⊢ 𝐶 ok), and that 𝐹 is

well-formed with respect to Θ (Θ ⊢ 𝐹 ok). The latter judgement is defined in Figure 8. In addition

to basic well-formedness conditions on the involved types and constraints, the judgement Θ ⊢ 𝐹 ok
imposes the following invariants: all type and term variables bound by 𝐹 are pairwise disjoint and

all free type variables appearing in annotations on def constraints are monomorphic. Moreover, Θ
must contain exactly the flexible variables bound by 𝐹 .

Remark 2 (Idempotent substitutions). Our requirement that 𝜃 be idempotent (i.e. 𝜃 ◦𝜃 = 𝜃) concretely
means that each binding 𝑎 ↦→ 𝐴 in 𝜃 either maps 𝑎 to itself (an “undetermined variable”) or to a type
𝐴 whose flexible variables are all undetermined. This has some helpful consequences, for example in
the definition of partition, discussed later (Remark 3).

To check the well-formedness of constraints embedded in stack frames, the corresponding rules

of Θ ⊢ 𝐹 ok in Figure 8 synthesise term contexts from the stack under consideration. As with earlier

well-formedness judgements, the judgement Θ ⊢ 𝐹 ok checks that all term variables are in scope,

but ignores the associated types.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:16 Emrich et al.

Θ ⊢ 𝐹 ok

· ⊢ · ok
rc(𝐹);Θ; tc(𝐹) ⊢ 𝐶 ok Θ ⊢ 𝐹 ok

Θ ⊢ 𝐹 :: □ ∧𝐶 ok

Θ ⊢ 𝐹 ok 𝑎 ∉ btv(𝐹)
Θ ⊢ 𝐹 :: ∀ 𝑎 ok

Θ ⊢ 𝐹 ok 𝑎 ∉ btv(𝐹)
(Θ, 𝑎 : 𝑅) ⊢ 𝐹 :: ∃ 𝑎 ok

for all 𝑎 ∈ ftv(𝐴) − rc(𝐹) | (𝑎 : •) ∈ Θ
𝑥 ∉ bv(𝐹) Θ ⊢ 𝐹 ok

Θ ⊢ 𝐹 :: def (𝑥 : 𝐴) ok

rc(𝐹);Θ; (tc(𝐹), 𝑥 : 𝐴) ⊢ 𝐶 ok
𝑥 ∉ bv(𝐹) Θ ⊢ 𝐹 ok

(Θ, 𝑎 : 𝑅) ⊢ 𝐹 :: let𝑅′ 𝑥 = ⊓𝑎.□ in 𝐶 ok

Fig. 8. Stack well-formedness.

(𝐹,Θ, 𝜃, 𝐴 ∼ 𝐵) (𝐹,Θ′, 𝜃 ′ ◦ 𝜃, true) where(Θ′, 𝜃 ′) = U(rc(𝐹),Θ, 𝜃𝐴, 𝜃𝐵)→ (S-Eq)

(𝐹,Θ, 𝜃, ⌈𝑥 : 𝐴⌉) (𝐹,Θ, 𝜃, tc(𝐹) (𝑥) ∼ 𝐴)→ (S-Freeze)

(𝐹,Θ, 𝜃, 𝑥 ⪯ 𝐴) (𝐹,Θ, 𝜃, ∃𝑎.𝐻 ∼ 𝐴) where ∀𝑎.𝐻 = tc(𝐹) (𝑥) 𝑎 # btv(𝐹)→ (S-Inst)

(𝐹,Θ, 𝜃,mono(𝑎)) (𝐹,Θ′, 𝜃, true)→ (S-Mono)
where 𝑏 = ftv(𝜃 (𝑎)) − rc(𝐹) Θ′ = (Θ − ˜𝑏) ∪ 𝑏 : • Θ′ ⊢• 𝜃 (𝑎) ok

(𝐹,Θ, 𝜃,𝐶1 ∧𝐶2) (𝐹 :: □ ∧𝐶2,Θ, 𝜃,𝐶1)→ (S-ConjPush)

(𝐹 :: □ ∧𝐶2,Θ, 𝜃, true) (𝐹,Θ, 𝜃,𝐶2)→ (S-ConjPop)

(𝐹,Θ, 𝜃, ∃𝑎.𝐶) (𝐹 :: ∃𝑎, (Θ, 𝑎 : ★), 𝜃 [𝑎 ↦→ 𝑎],𝐶)→ (S-ExistsPush)

(𝐹 :: 𝑓 :: ∃𝑎,Θ, 𝜃, true) (𝐹 :: ∃𝑐 :: 𝑓 ,Θ′, 𝜃↾Θ′, true)→ (S-ExistsLower)
where 𝑓 is neither a let or ∃ frame

˜𝑏; 𝑐 = partition(�̃�, 𝜃,Θ) Θ′ = Θ − ˜𝑏 |�̃� | > 0

(𝐹,Θ, 𝜃,∀𝑎.𝐶) (𝐹 :: ∀ 𝑎,Θ, 𝜃,𝐶)→ (S-ForallPush)

(𝐹 :: ∀ 𝑎,Θ, 𝜃, true) (𝐹,Θ, 𝜃, true) where 𝑎 ∉ ftv(𝜃 (Θ))→ (S-ForallPop)

(𝐹,Θ, 𝜃, def (𝑥 : 𝐴) in 𝐶) (𝐹 :: def (𝑥 : 𝐴),Θ′, 𝜃,𝐶)→ (S-DefPush)
where 𝑏 = ftv(𝜃 (𝐴)) − rc(𝐹) Θ′ = (Θ − ˜𝑏) ∪ 𝑏 : • for all 𝑎 ∈ ftv(𝐴) | Θ′ ⊢• 𝜃 (𝑎) ok

(𝐹 :: def (𝑥 : 𝐴),Θ, 𝜃, true) (𝐹,Θ, 𝜃, true)→ (S-DefPop)

(𝐹,Θ, 𝜃, let𝑅 𝑥 = ⊓𝑏.𝐶1 in 𝐶2) (𝐹 :: let𝑅 𝑥 = ⊓𝑏.□ in 𝐶2, (Θ, 𝑏 : ★), 𝜃 [𝑏 ↦→ 𝑏],𝐶1)→ (S-LetPush)

(𝐹 :: let★ 𝑥 = ⊓𝑏.□ in 𝐶 :: ∃𝑎,Θ, 𝜃, true) (𝐹 :: ∃𝑎′′,Θ′, 𝜃↾Θ′, def (𝑥 : 𝐵) in 𝐶)→ (S-LetPolyPop)
where 𝑎′; 𝑎′′ = partition((�̃�, 𝑏), 𝜃,Θ) 𝐴 = 𝜃 (𝑏) 𝑐 = ftv(𝐴) ∩ 𝑎′ Θ′ = Θ − 𝑎′ 𝐵 = ∀𝑐.𝐴

(𝐹 :: let• 𝑥 = ⊓𝑏.□ in 𝐶 :: ∃𝑎,Θ, 𝜃, true) (𝐹 :: ∃(𝑐, 𝑎′′),Θ′, 𝜃↾Θ′, def (𝑥 : 𝐴) in 𝐶)→ (S-LetMonoPop)
where 𝑎′; 𝑎′′ = partition((�̃�, 𝑏), 𝜃,Θ) 𝐴 = 𝜃 (𝑏) 𝑐 = ftv(𝐴) ∩ 𝑎′ Θ′ = Θ − (𝑎′ − 𝑐)

Fig. 9. Constraint solving rules.

4.1 Stack Machine Rules
We now introduce the rules of the constraint solver itself (Figure 9). These rules are deterministic

in the sense that at most one rule applies at any point. Moreover, after each step the resulting state

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:17

U(Δ,Θ, 𝑎, 𝑎) =
return (Θ, 𝜃 id)

U(Δ,Θ, 𝐷 𝐴, 𝐷 𝐵) =
let (Θ1, 𝜃1) = (Θ, 𝜃 id)
let 𝑛 = arity(𝐷)
for 𝑖 ∈ 1 . . . 𝑛

let (Θ𝑖+1, 𝜃𝑖+1) =
let (Θ′, 𝜃 ′) = U(Δ,Θ𝑖 , 𝜃𝑖 (𝐴𝑖), 𝜃𝑖 (𝐵𝑖))
return (Θ′, 𝜃 ′ ◦ 𝜃𝑖)

return (Θ𝑛+1, 𝜃𝑛+1)

U(Δ, (Θ, 𝑎 : 𝑅), 𝑎, 𝐴) =
U(Δ, (Θ, 𝑎 : 𝑅), 𝐴, 𝑎) =

let Θ1 = demote(𝑅,Θ,ftv(𝐴) − Δ)
assert Δ,Θ1 ⊢𝑅 𝐴 ok
return (Θ1, 𝜃 id [𝑎 ↦→ 𝐴])

U(Δ,Θ,∀𝑎.𝐴,∀𝑏.𝐵) =
assume fresh 𝑐

let (Θ1, 𝜃
′) = U((Δ, 𝑐),Θ, 𝐴[𝑐/𝑎], 𝐵 [𝑐/𝑏])

assert 𝑐 ∉ ftv(𝜃 ′)
return (Θ1, 𝜃

′)

demote(★,Θ,Δ) = Θ
demote(•, ·,Δ) = ·

demote(•, (Θ, 𝑎 : 𝑅),Δ) = demote(•,Θ,Δ), 𝑎 : • (𝑎 ∈ Δ)
demote(•, (Θ, 𝑎 : 𝑅),Δ) = demote(•,Θ,Δ), 𝑎 : 𝑅 (𝑎 ∉ Δ)

Fig. 10. Unification algorithm.

is unique up to the names of binders added to the stack and the order of adjacent existential frames

in the frame (e.g., a step may yield either 𝐹 :: ∃𝑎 :: ∃𝑏 :: . . . or 𝐹 :: ∃𝑏 :: ∃𝑎 :: . . .). A constraint is

satisfiable in a given context if the machine reaches a state of the form (∀Δ :: ∃Ξ,Θ, 𝜃, true) from
an initial configuration built from 𝐶 and the context. From such a final configuration we can also

read off a most general solution for the constraint. If the constraint is unsatisfiable, the machine

gets stuck before reaching such a final state. We formalise the properties of the solver in Section 4.2.

Unification. The rule S-Eq in Figure 9 handles equality constraints of the form 𝐴 ∼ 𝐵. We

apply 𝜃 to both types as this may refine the types prior to invoking the unification procedure

U. It remains unchanged as compared to the original type inference system for FreezeML based

on Algorithm W [Emrich et al. 2020]. The unification algorithm is largely standard, supporting

unification of polymorphic types without reordering of quantifiers or the removal/addition of

unneeded quantifiers, as per FreezeML’s notion of type equality. It returns updated versions of the

restriction context and substitution, named Θ′
and 𝜃 ′. The algorithm is sound, complete, and yields

most general unifiers [Emrich et al. 2020, Theorem 4 and 5].

One notable feature is the unification algorithm’s treatment of restrictions. The restriction

contextΘ′
returned by the algorithm contains the same flexible variables as the originalΘ, but some

variables therein may have been demoted from a polymorphic restriction to a monomorphic one.

Unifying a flexible, monomorphic variable 𝑎 with a type 𝐴 only succeeds if making all free flexible

variables in 𝐴 monomorphic makes 𝐴 itself monomorphic. Therefore, assuming 𝑎 : •, 𝑏 : ★ ∈ Θ,
unifying 𝑎 with 𝑏 → 𝑏 yields (𝑏 : •) ∈ Θ′

, whereas unification of 𝑎 with ∀𝑐.𝑐 → 𝑐) fails.
The unification algorithm is shown in Figure 10. On each invocation, the first applicable clause

is used; 𝜃 id denotes the identity substitution on Θ.

Basic constraints. The rules for constraints ⌈𝑥 : 𝐴⌉ and 𝑥 ⪯ 𝐴 yield corresponding equality

constraints. For instantiation constraints, the solver instantiates all top-level quantifiers 𝑎 of 𝑥 ’s

type by existentially quantifying them. Note that the rule imposes picking variables 𝑎 that are fresh

with respect to the bound type variables (rigid and flexible) of 𝐹 . In both rules, tc(𝐹) denotes the
term context synthesised from all def constraints in 𝐹 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:18 Emrich et al.

A monomorphism constraint mono(𝑎) is handled by demoting all flexible variables in 𝜃 (𝑎). The
step fails if doing so does not make 𝜃 (𝑎) a monomorphic type. Note that demoting the involved

restrictions means that later unification steps cannot make 𝑎 polymorphic — even if, say, 𝜃 (𝑎) = 𝑎

holds at the time of applying S-Mono, recording (𝑎 : •) in Θ′
ensures that it stays monomorphic.

The rules S-ConjPush and S-ConjPop handle conjunctions. When encountering 𝐶1 ∧𝐶2, the

first rule pushes a corresponding frame on the stack. Once 𝐶1 is solved and the state’s in-progress

constraint becomes true, the latter rule pops this frame from the stack and continues solving 𝐶2.

Binding of type variables. When encountering ∃𝑎.𝐶 or ∀𝑎.𝐶 , a corresponding frame is added by

the rules S-ExistsPush and S-ForallPush, respectively.

In general, once the in-progress constraint in a state becomes true and the topmost stack frame

binds a flexible variable 𝑎, the binding frame is either moved downwards in the stack, generalised

when handling let constraints, or dropped if no variable further down in the stack depends on

𝑎. Note that lowering binders of flexible variables in the stack this way effectively increases the

syntactic scope of the bound variable as it moves outwards in the constraint representing the stack.

The rule S-ExistsLower implements part of this lowering mechanism; it acts on stacks of the form

𝐹 :: 𝑓 :: ∃𝑎, a shorthand for 𝐹 :: 𝑓 :: ∃𝑎0 :: · · · :: ∃𝑎𝑛 . The rule requires that 𝑓 is neither a let frame

(whose rules treat adjacent existentials directly) or another existential frame (to make the rule

deterministic by making 𝑎 exhaustive). It uses the helper function partition, which returns a tuple

and is defined as follows.

partition(Ξ, 𝜃,Θ) = Ξ′
;Ξ′′

where Ξ′,Ξ′′ = Ξ and for all 𝑎 ∈ Ξ : 𝑎 ∈ Ξ′′
iff 𝑎 ∈ ftv(𝜃↾(ftv(Θ)−Ξ))

It partitions Ξ into two sets Ξ′
and Ξ′′

such that the latter contains exactly those variables appearing

in the range of 𝜃 restricted to the flexible variables bound further down in the stack (i.e., 𝜃 restricted

to ftv(Θ) − Ξ). This formalises the notion that no variable further down in the stack depends on a

variable in Ξ′
. Therefore, the bindings for Ξ′

can simply be removed altogether; the bindings for

Ξ′′
must be kept and are lowered within the stack.

Remark 3 (Idempotence and partition). If we did not require substitutions to be idempotent, the
existing definitions would break in subtle ways (or need to be made more complicated). For example,.
let 𝑎, 𝑏, 𝑐 ∈ Θ and Ξ = {𝑎, 𝑏} and 𝜃 = [𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑎, 𝑐 ↦→ 𝑏]. Note that this 𝜃 is not idempotent
since 𝜃 (𝜃 (𝑐))) = 𝑎 ≠ 𝑏 = 𝜃 (𝑐). The definition of partition(Ξ, 𝜃,Θ) would then yield Ξ′ = {𝑎} and
Ξ′′ = {𝑏}, even though 𝑐 depends on both variables.

When popping a frame ∀𝑎 from the stack, the rule S-ForallPop checks that 𝑎 does not escape its

scope by still being present in the range of 𝜃 . Note that together with the lowering of existentials

mentioned before, removing the unneeded variables
˜𝑏 in S-ExistsLower is not simply an optimi-

sation, but necessary for completeness. Consider the state (𝐹 :: ∀𝑎 :: ∃𝑏,Θ, 𝜃, true) where 𝜃 (𝑏) = 𝑎.

If this variable was lowered by S-ExistsLower – yielding a new state (𝐹 :: ∃𝑏 :: ∀𝑎,Θ, 𝜃, true)
– instead of being removed, this would cause S-ForallPop to erroneously detect an escaping

quantifier.

Binding of term variables. Similarly to the other *Push rules, S-DefPush moves a constraint

def (𝑥 : 𝐴) in 𝐶 to the stack and makes 𝐶 the next in-progress constraint. However, it also forces

all flexible variables found in 𝜃 (𝐴) to be monomorphic and checks that doing so does not make the

substitution ill-formed. This ill-formedness would arise if the substitution maps one of the type

variables to be monomorphised to a polymorphic type. The monomorphisation is crucial in order

to maintain the invariant that the term context does not contain unknown polymorphism in the

form of unrestricted (i.e., polymorphic) unification variables. Note that the checks performed by

S-DefPush are equivalent to adding

∧
𝑎∈ftv(𝐴)−rc(𝐹) mono(𝑎) as a conjunct to 𝐶 , but doing so may

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:19

create an ill-formed intermediate state before failing when solving one of the mono constraints.
The rule S-DefPop is the counterpart of S-DefPush and simply pops the def frame.

S-LetPush handles constraints let𝑅 𝑥 = ⊓𝑏.𝐶1 in 𝐶2 by adding a stack frame and bringing 𝑏

into scope while solving𝐶1. Once𝐶1 has been solved, the rules S-LetPolyPop and S-LetMonoPop

handle the different semantics of let• and let★ regarding how they determine the type of 𝑥 . We

first consider the former rule. Note that the rule is applicable with zero or more existential frames

on top of the let frame, binding 𝑎, followed by the actual let frame. These existential frames are

either the result of existential constraints at the top-level of the original constraint 𝐶1 (the first

subconstraint of the let constraint under consideration), or were lowered while solving 𝐶1.

Similarly to S-ExistsLower, the variables 𝑎 and 𝑏 are partitioned by the partition function into

𝑎′ and 𝑎′′. Note that we include 𝑏 here because let𝑅 𝑥 = ⊓𝑏.𝐶1 in 𝐶2 binds 𝑏 existentially in 𝐶1.

By definition of partition, we again have that no unification variable bound below the let frame

depends on any of the variables in 𝑎′ (as indicated by 𝑎 not appearing in the image of 𝜃 restricted

to the variables bound in the lower frames). Similarly to S-ExistsLower, the variables 𝑎′′ must be

preserved and are lowered in the stack. Note that 𝑎′′ may or may not contain 𝑏.

The type 𝐴 for 𝑥 is then determined by generalising 𝜃 (𝑏). The variables 𝑐 to be generalised

are obtained from taking those free type variables of 𝜃 (𝑏) that also appear in 𝑎′. Recall that ftv
applied to a type yields an ordered sequence, and we assume that the ordering is preserved under

intersection.

By definition, 𝑎′ contains those variables from 𝑎, 𝑏 that do not appear in the codomain of 𝜃

restricted to the variables from lower stack frames (i.e. no such variable from a lower stack frame

directly depends on a variable in 𝑎′). Nevertheless, there may be variables 𝑎 ∈ 𝑎′ such that 𝜃 (𝑎) = 𝐵

where 𝐵 contains (or is) a variable from a lower frame (i.e. from Θ − 𝑎, 𝑏), meaning that 𝑎 must

not be generalised. However, due to the idempotency of 𝜃 , we have that 𝜃 (𝑎) = 𝑎 for all 𝑎 ∈ 𝜃 (𝑏).
In other words, intersecting 𝑎′ with the free type variables of 𝜃 (𝑏) evokes that 𝑐 only contains

“undetermined” variables mapped to themselves that are not referenced by lower stack frames,

either.

Note that rewriting the let frame to a def constraint also evokes that solving the latter monomor-

phises any flexible variables in 𝐴 that were not generalised. This reflects the monomorphic instan-

tiation imposed in the semantics of let★ constraints (cf. 𝛿 ′ in Sem-PolyPop in Figure 3).

The only difference between S-LetPolyPop and S-LetMonoPop is that while the latter rule

also determines the variables 𝑐 , it does not generalise them. This means that the resulting type 𝐴

assigned to 𝑥 contains the unification variables 𝑐 freely. Therefore, these variables must kept in

scope and are existentially quantified further down in stack after the rule is applied.

4.2 Metatheory
Our goal is to state a preservation property along the lines that stepping from state 𝑠0 to 𝑠1 implies

that some representation of 𝑠0 as a constraint is equivalent to 𝑠1’s constraint representation. To this

end, we first define how to represent the unification context, comprising Θ and 𝜃 , as a constraint.

Given Θ and 𝜃 , we define:

𝔘(Θ) =
∧

(𝑎 : •) ∈Θ mono(𝑎)

𝔘(𝜃) =
∧

𝑎∈ftv(Θ) 𝑎 ∼ 𝜃 (𝑎)

𝔘(Θ, 𝜃) = 𝔘(Θ) ∧𝔘(𝜃)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:20 Emrich et al.

Using 𝔘, we may now represent a state (𝐹,Θ, 𝜃,𝐶) as 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)], where the 𝐹 [−] operator
plugs a constraint into the stack’s innermost hole:

·[𝐶] = 𝐶

(𝐹 :: □ ∧𝐶2) [𝐶1] = 𝐹 [𝐶1 ∧𝐶2]
(𝐹 :: ∀ 𝑎) [𝐶] = 𝐹 [∀𝑎.𝐶]
(𝐹 :: ∃ 𝑎) [𝐶] = 𝐹 [∃𝑎.𝐶]

(𝐹 :: let𝑅 𝑥 = ⊓𝑎.□ in 𝐶2) [𝐶1] = 𝐹 [let𝑅 𝑥 = ⊓𝑎.𝐶1 in 𝐶2]
(𝐹 :: def (𝑥 : 𝐴)) [𝐶] = 𝐹 [def (𝑥 : 𝐴) in 𝐶]

Note that if the state is closed (i.e., 𝐹 binds all variables free in𝐶) the resulting constraint 𝐹 [𝐶] is
closed, too. In order to reason about constraints that are satisfied by non-empty instantiations, we

assume that there are some rigid and flexible contexts Δ and Ξ quantified by the bottom-most stack

frames that remain unchanged by the step. Therefore, we consider the satisfiability of constraints

before and after the step by an instantiation 𝛿 with Δ ⊢ 𝛿 : Ξ ⇒★ ·.

Theorem 3 (Preservation). If (∀Δ :: ∃Ξ :: 𝐹0,Θ0, 𝜃0,𝐶0) ok and

(∀Δ :: ∃Ξ :: 𝐹0,Θ0, 𝜃0,𝐶0) → (∀Δ :: ∃Ξ :: 𝐹1,Θ1, 𝜃1,𝐶1)

then

Δ;Ξ; ·;𝛿 ⊢ 𝐹0 [𝐶0 ∧𝔘(Θ0, 𝜃0)] iff Δ;Ξ; ·;𝛿 ⊢ 𝐹1 [𝐶1 ∧𝔘(Θ1, 𝜃1)]

This preservation property is inspired by a similar one holding for HM(𝑋) [Pottier and Rémy

2005, Lemma 10.6.9].

The following progress property states that given a well-formed, non-final state whose represen-

tation as a formula is satisfiable, the stack machine can take a step.

Theorem 4 (Progress). Let (𝐹,Θ, 𝜃,𝐶) ok and 𝐹 [𝐶] ≠ ∀Δ.∃Ξ.true for all Δ,Ξ. Further, let
·; ·; ·; ∅ ⊢ 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)]. Then there exists a state 𝑠1 such that (𝐹,Θ, Γ, 𝜃,𝐶) → 𝑠1.

Termination is another crucial property.

Theorem 5 (Termination). The constraint solver terminates on all inputs.

The proof relies on the existence of a well-ordering < on states such that 𝑠 → 𝑠 ′ implies 𝑠 ′ < 𝑠 .

We observe that the well-ordering cannot simply be defined based on the syntactic size of the

in-progress constraint of each state before and after the step, even when plugging the constraint

into each state’s stack. For example, the rule S-Inst in Figure 9 may introduce an arbitrary number

of nested existential constraints. Other rules such as S-ExistsLower may simply reorder stack

frames. Therefore, given a state (𝐹,Θ, 𝜃,𝐶), the well-ordering not only takes the size of 𝐹 [𝐶] and𝐶
into account but also the number of instantiation constraints in𝐶 and the position of the right-most

existential frame in 𝐹 .

We use the syntax def Γ in 𝐶 to denote a series of nested def constraints with𝐶 as the innermost

constraint, where each def constraints performs a binding from Γ. We now state the overall

correctness of the solver as follows: A constraint𝐶 is satisfiable in context Δ;Ξ; Γ using instantiation
𝛿 if and only if the solver reaches a final state from the input constraint ∀Δ.∃Ξ.def Γ in 𝐶 and 𝛿

is a refinement of the substitution 𝜃 returned by the solver. Here, a “refinement” of 𝜃 is simply a

composition with 𝜃 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:21

Theorem 6 (Correctness of constraint solver). Let Δ ⊢ Γ ok and Δ;Ξ; Γ ⊢ 𝐶 ok. Then we
have

Δ;Ξ; Γ;𝛿 ⊢ 𝐶
iff
there exist Θ, 𝜃 ′, 𝜃,Ξ′ s.t.

(·, ·, ∅,∀Δ. ∃Ξ. def Γ in 𝐶) →∗ (∀Δ :: ∃ (Ξ,Ξ′),Θ, 𝜃, true) and
Δ ⊢ 𝜃 ′ : Θ ⇒ · and
(𝜃 ′ ◦ 𝜃)↾Ξ = 𝛿.

Even though 𝜃 ′ acts like an instantiation (its codomain only contains rigid variables), it is crucial

for it to be a substitution, meaning that it respects the individual restrictions in Θ. An instantiation

𝛿 ′ in place of 𝜃 ′ may violate the restrictions in Θ and introduce polymorphism in places where the

type system prohibits it, which would make the right-to-left direction of the theorem invalid. Also

note the domain of 𝜃 is (Ξ,Ξ′), whereas that of 𝛿 is Ξ. Thus, we restrict 𝜃 to Ξ when relating it to 𝛿 .

Observe that Theorem 6 also states that our solver finds most general solutions: The instantiation

𝜃 returned by the solver is independent from 𝛿 . Together with the deterministic nature of our solver,

this means that any such 𝛿 can be obtained from 𝜃 .

For the purposes of type-checking, we may now relate the correctness of the solver to constraints

resulting from the translation function J−K introduced in Section 3.1. If the solver succeeds on the

translation of some term𝑀 in some context Δ; Γ, then the term is well-typed in context Δ; Γ for

any well-formed refinement of 𝜃 (𝑎), where 𝑎 is the placeholder variable used for the type of𝑀 .

Theorem 7 (Constraint-based typechecking is sound). Let Δ ⊢ Γ and Δ; Γ ⊢ 𝑀 ok and
𝑎 #Δ. If (·, ·, ∅,∀Δ. ∃𝑎. def Γ in J𝑀 : 𝑎K) →∗ (∀Δ :: ∃ (𝑎, ˜𝑏),Θ, 𝜃, true) and Δ ⊢ 𝜃 ′ : Θ ⇒ · then
Δ; Γ ⊢ 𝑀 : (𝜃 ′ ◦ 𝜃) (𝑎).

Conversely, if𝑀 has type 𝐴, then 𝐴 can be obtained from instantiating 𝜃 (𝑎).

Theorem 8 (Constraint-based typechecking is complete and most general). Let 𝑎 #Δ.
If Δ; Γ ⊢ 𝑀 : 𝐴 then there exist Ξ,Θ, 𝜃 , 𝛿 such that (·, ·, ∅,∀Δ .∃𝑎 .def Γ in J𝑀 : 𝑎K) →∗ (∀Δ ::

∃ Ξ,Θ, 𝜃, true) and 𝐴 = 𝛿 (𝜃 (𝑎)).

Remark 4 (mono(−) constraints). The constraint mono(𝑎) constrains a type variable to be instanti-
ated only with a monotype. Such constraints are not produced during constraint generation and appear
in the constraint solving rules only in the rule S-Mono which solves them immediately by checking
the current instantiation of 𝑎 and constraining the free variables of 𝑎 to be monomorphic. Moreover,
because def (𝑥 : 𝐴) in 𝐶 constraints also require 𝐴 to be monomorphic, we considerd leaving out the
mono(𝑎) constraint form altogether and considering it syntactic sugar for def (𝑥 : 𝑎) in true. The
main reason we have not done this is to simplify the presentation, particularly in the statement and
proof of the above results, in order to ensure a simple translation of monomorphism information latent
in Θ back into explicit constraints.
An alternative design we considered would be to attach monomorphism restrictions to existential

quantifiers, and drop the monomorphism requirement on def constraints. However, we were not able
to find a way to make this work that retains most general solutions for def constraints, as illustrated
in Section 3.2.

5 DISCUSSION
In this section we discuss two extensions: using ranks for efficiency and unordered quantification.

We also compare our approach more directly to Pottier and Rémy’s presentation of HM(𝑋).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:22 Emrich et al.

5.1 Using Ranks
In our solver, the lowering of existential frames in the stack as well as generalisation are controlled

by the free type variables in the image of the substitution 𝜃 in the state under consideration. Both

mechanisms depend on the partition function. A more efficient implementation associates a rank
with each unification variable [Kuan and MacQueen 2007; Rémy 1992], which can then be used

instead of checking what free type variables appear in certain types in the context.

Implementing ranks for our solver requires a similar mechanism to the one described for the

HM(𝑋) solver by Pottier and Rémy [2005]; ranks are orthogonal to the support for first-class

polymorphism in our system.

We briefly outline how to adapt their mechanism to implement the escape check our solver

performs for ∀ quantifiers. To this end we associate a rank with each flexible and rigid variable

𝑏 in a given state 𝑠 , denoted rank(𝑏). We define rank(𝑠) as the number of let frames plus the

number of ∀ frames appearing in 𝐹 . When the solver encounters a binder for type variable 𝑏 in

state 𝑠 , the variable’s rank is then initialised to be rank(𝑠). When the unifier detects that some

flexible variable 𝑎 should be substituted with some type 𝐴, then the ranks of all variables in 𝐴

are updated to be no larger than rank(𝑎). The escape check in the rule S-ForallPop, applied to

state 𝑠 = (𝐹 :: ∀𝑏,Θ, 𝜃, true), can then be performed by checking that rank(𝑏) = rank(𝑠) holds. To
partition the variables in Ξ using ranks in the rules S-LetPolyPop and S-LetPolyPop in Figure 9

we use the following modified version of the function partition:

partition′(Ξ, 𝑠) = Ξ′
;Ξ′′

where Ξ′,Ξ′′ = Ξ and (for all 𝑎 ∈ Ξ | 𝑎 ∈ Ξ′′
iff 𝑎 ∈ rank(𝑎) < rank(𝑠))

Eschewing existential frames. To avoid the need for (inefficiently) lowering existential frames in

the stack by swapping with one non-existential frame at a time (as for example in S-ExistsLower),

we may optimise the solver further by not carrying individual existential frames in the stack at

all. Instead, each state 𝑠 contains rank(𝑠) sets of type variables of that rank. We may then remove

the rule S-ExistsLower altogether; in S-Let*Pop the variables 𝑎′ are determined by taking exactly

those of rank rank(𝑠) (the set 𝑎′′ isn’t needed anymore in this setting).

5.2 Unordered FreezeML
So far we have considered a syntactic equational theory on types that equates quantified types up to

alpha-equivalence only and does not allow for any reordering of quantifiers or the removal/addition

of unused ones. This is in line with the original presentation of FreezeML [Emrich et al. 2020].

However, this is not a fundamental requirement of the system.Wemay defineUnordered FreezeML,
a variant of FreezeML where quantifiers are unordered, by redefining equality of types to allow

∀𝑎𝑏.𝑎 → 𝑏 = ∀𝑏𝑎.𝑎 → 𝑏 = ∀𝑎𝑏𝑐.𝑎 → 𝑏 and consider ftv to return sets of variables rather than

sequences. The typing rules of Unordered FreezeML can than be obtained from Figure 1 by replacing

every occurrence of 𝑎 by 𝑎. Likewise, type inference for Unordered FreezeML can be performed

using a stack machine using the same rules as shown in Figure 9. The only change is to replace

the unification algorithm U with an alternative one ignoring the order of quantifiers as well as

unnecessary ones. This is of course not trivial because unification can no longer assume that

when it encounters a ∀ on one side of an equation, the other side must be a ∀ binding the same

(modulo alpha-equivalence) variable. Unification must be modified to handle the case where one

side ∀-binds an unused variable (e.g. ∀𝑎.𝑖𝑛𝑡 ∼ 𝑖𝑛𝑡) or where bindings must be reordered (e.g.

∀𝑎, 𝑏, 𝑐.𝑎 → 𝑏 → 𝑐 ∼ ∀𝑎, 𝑏, 𝑐.𝑐 → 𝑏 → 𝑎). The point is that this complexity seems to be confined to

unification and the rest of the system is unchanged.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:23

5.3 Comparison with HM(𝑋) solver by Pottier and Rémy
The solver presented in this section is inspired by the one presented by Pottier and Rémy [2005]

for HM(𝑋), adding support for first-class polymorphism in the style of FreezeML.

Additional notable differences include the following:

• In the HM(𝑋) solver, configurations carry a collection𝑈 of unification constraints. It can be

interpreted as a conjunction built from a subset of the constraint language with additional

well-formedness restrictions. This means that when extending the constraint language, the

definition of constraint permitted in𝑈 can be adapted accordingly.

Our solver represents the unifier context with two separate components Θ and 𝜃 . This is

mostly for the purpose of making the system more similar to the original type inference

algorithm of FreezeML. Our system already provides a mechanism for representing the

unification context as a constraint, in the form of 𝔘(Θ, 𝜃), defined in Section 4.2 for the

purposes of our meta-theory. It would be straightforward to define unification contexts in our

solver in terms of𝔘(Θ, 𝜃) (or a more structured representation thereof using multi-equations)

instead of Θ and 𝜃 .

• The solver presented by Pottier and Rémy supports recursive types by allowing the solver

state to contain constraints of the form 𝑎 ∼ 𝐴, where 𝐴 ≠ 𝑎 and 𝑎 ∈ ftv(𝐴). In our system, a

corresponding state with 𝜃 (𝑎) = 𝐴 for the same 𝐴 would be ill-formed, as we require 𝜃 to be

idempotent.

We consider support for recursive types as orthogonal to the issue of supporting first-class

polymorphism, but our reliance on the idempotency of 𝜃 would require adding explicit 𝜇

types for handling recursive types.

• The HM(𝑋) solver implements several optimisations, for example mechanisms to reduce the

number of type variables present in states. Similar optimisations could be performed by our

solver, but we eschew them for the sake of brevity, including the usage of ranks described in

Section 5.1.

• In the HM(𝑋) solver, def constraints and term variables efficiently handle sharing the work of

type inference for let-generalized values, but they are not strictly necessary: def constraints

can be eliminated by a form of constraint inlining. Doing so would not change the results of

type inference but would be disastrous for performance. In constrast, our system uses term

variables as a means of keeping first-class polymorphism tractable. Term variables are used

as placeholders for polymorphic types that we may instantiate, which is why we require that

the polymorphism in these types is always fully determined. Flexible type variables can also

become bound to arbitrarily polymorphic types (e.g. during type inference for 𝑖𝑑 ⌈𝑖𝑑⌉) but
the quantifiers occurring in these types are never instantiated during constraint solving, they

can only be unified with other quantifiers. By ensuring that all polymorphism in the term

context is fully known, we guarantee that we do not instantiate unknown polymorphism.

On the other hand, it does not appear possible to eliminate def constraints via substitution or

to define let constraints in terms of def, as in Pottier and Rémy work.

Remark 5 (Itches we haven’t been able to scratch yet). An alternative system without term variables
in the constraint language should be possible, in which case instantiation of quantifiers occuring in
types bound to type variables would need to take place. This would require an additional mechanism
to guarantee that the polymorphism of those type variables that could be instantiated in this version
is fixed. We haven’t adopted this alternative design as we consider the current design that uses term
variables to be closer to Pottier and Rémy’s work and the original version of FreezeML.

It also may be possible to recover the property that let and def constraints canbe “expanded away”.
One possibility (suggested by a reviewer) is to seek a suitable adjustment of the notion of constraint

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:24 Emrich et al.

inlining that accounts for frozen constraints, perhaps by generalizing them to permit a local type
constraint (⌈𝑥 : [𝐶]𝐴⌉). As discussed in 6, allowing for full constrained types in our setting poses
challenges, and may also encounter similar issues to those encountered in equational reasoning about
FreezeML terms, which was considered briefly by Emrich et al. [2020]. This general issue deserves
further investigation.

Further discussion of these two issues, which are interrelated, is in an appendix.

6 RELATEDWORK
Constraint-based type inference for Hindley-Milner and related systems has a long history [Wand

1987]. Some of the most relevant systems include qualified types [Jones 1994], HM(𝑋) [Odersky et al.

1999], OutsideIn(𝑋) [Vytiniotis et al. 2011], and GI [Serrano et al. 2018] which present increasingly

sophisticated techniques for solving (generalisations of) constraints generated from ML or Haskell-

like programs. Our work differs in building on HM(𝑋) as presented by Pottier and Rémy [2005],

while adapting it to support first-class polymorphism based on the FreezeML approach. On the

other hand, constraint-based FreezeML does not so far support constraint solving parameterised

by an arbitrary constraint domain 𝑋 , and extending it to support this is a natural but nontrivial

next step. In particular, FreezeML uses exactly System F types, rather than the type schemes with

constraint components of the form ∀𝑎.𝐶 ⇒ 𝐴 found in HM(𝑋). We have compared our constraint

solver to the HM(𝑋) solver by Pottier and Rémy in Section 5.3.

FreezeML is also related to PolyML as explained by Emrich et al. [2020]. Unlike FreezeML, PolyML

uses two different sorts of polymorphic types: ML-like type schemes and first-class polymorphic

types. The latter may only be introduced with explicit type annotations. As a result, the conditions

to pick most general solutions in the semantics of certain constraints in our language are not

necessary in PolyML.

The type system of GI [Serrano et al. 2018] uses carefully crafted rules for 𝑛-ary function

applications, determining when arguments’ types may be generalised or instantiated. It does not

perform let generalisation. Its type inference system is built on constraint solving, using a different

approach towards restricting polymorphism. It syntactically distinguishes three sorts of unification

variables, which may only be instantiated with monomorphic, guarded, or fully polymorphic types.

While our solver determines the order of constraint solving using a stack, their system allows

individual rules to be blocked until progress has been made elsewhere, for example waiting until a

fully polymorphic variable has been substituted with a more concrete type.

QuickLook [Serrano et al. 2020] combines Hindley-Milner style type inference with bidirectional

type inference in a subtle way, and when typechecking applications of polymorphically typed

variables, performs a “quick look” at all of the arguments; this amounts to a sound but shallow

analysis whether there is a unique type instantiation (possibly involving polymorphism). If there

is a unique type instantiation then that instantiation is chosen, otherwise quantified variables

are instantiated with monomorphic flexible variables. Type inference for QuickLook follows a

two-stage approach: all first-class polymorphism is resolved at constraint generation time, and

the actual constraint solver does not have to find solutions for polymorphic type variables. Conse-

quently, their constraint language and solver are completely standard and oblivious to first-class

polymorphism. Thus, QuickLook requires only small modifications to existing Haskell-style type

inference, including extensions such as qualified types and GADTs, but (like other recent proposals

such as GI) does not support let-bound polymorphism nor come with a formal completeness result.

In an appendix the authors discuss approaches to supporting let generalisation; one is to use let

constraints in the style of Pottier and Rémy, and that is what we do.

Some aspects of our solver are reminiscent of the approach taken in Type Inference in Context

by Gundry et al. [2010], though their approach performs type inference as a traversal of source

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:25

language terms rather than introducing an intermediate constraint language. We are interested in

adapting their approach to FreezeML type inference, particularly leveraging the insight that type

inference monotonically increases knowledge about possible solutions (reflected in the structure of

their contexts).

Returning to the motivation for this work mentioned in the introduction, it is a natural to ask

what obstacles remain to generalizing our system to handle an arbitrary constraint domain (the

“𝑋 ” in HM(𝑋)). The immediate obstacle is how to handle constrained or qualified types 𝐶 ⇒ 𝐴

which are considered equivalent up to reordering constraints 𝐶 . Such types need not induce, and

depending on the theory 𝑋 such types may have equivalent forms with different numbers of

quantified types. Adopting the unordered quantification approach in Section 5.2 could help with

this, but we leave this and the investigation of generalizing to a “FreezeML(𝑋)” to future work.

7 CONCLUSIONS
Emrich et al. [2020] recently introduced FreezeML, a new approach to ML-style type inference that

supports the full power of System F polymorphism using type and term annotations to control

instantiation and generalisation of polymorphic types. Their initial type inference algorithm

was a straightforward extension of Algorithm W. We have introduced Constraint FreezeML, an

alternative constraint-based presentation of FreezeML type inference, opening up many possibilities

for extending FreezeML in the future. We extended the constraint language of HM(𝑋) with suitable

constraints, equipped with a semantics and translation from FreezeML programs to constraints

that encode type inference problems, and presented a deterministic, terminating state machine for

solving the constraints. Several potential next steps are opened by this work, including generalising

to support arbitrary constraint domains (the “𝑋 ” in HM(𝑋)), implementing the solver efficiently

using ranks, and considering recursive types and higher kinds.

ACKNOWLEDGMENTS
This work was supported by ERC Consolidator Grant Skye (grant number 682315) and by an ISCF

Metrology Fellowship grant provided by the UK government’s Department for Business, Energy

and Industrial Strategy (BEIS). Lindley is supported by UKRI Future Leaders Fellowship “Effect

Handler Oriented Programming” (MR/T043830/1).

REFERENCES
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming Without Tiers. In Formal

Methods for Components and Objects, 5th International Symposium, FMCO 2006, Amsterdam, The Netherlands, November
7-10, 2006, Revised Lectures (Lecture Notes in Computer Science, Vol. 4709), Frank S. de Boer, Marcello M. Bonsangue,

Susanne Graf, and Willem P. de Roever (Eds.). Springer, 266–296. https://doi.org/10.1007/978-3-540-74792-5_12

Luís Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In POPL. ACM Press, 207–212.

Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates. 2020. FreezeML: Complete and Easy Type

Inference for First-class Polymorphism. In PLDI. ACM, 423–437. Extended version available at https://doi.org/10.48550/

arXiv.2004.00396.

Frank Emrich, Jan Stolarek, James Cheney, and Sam Lindley. 2022. Constraint-based type inference for FreezeML (extended
version). Technical Report. arXiv:2207.09914.

Jacques Garrigue and Didier Rémy. 1999. Semi-Explicit First-Class Polymorphism for ML. Inf. Comput. 155, 1-2 (1999),
134–169.

Adam Gundry. 2015. A typechecker plugin for units of measure: domain-specific constraint solving in GHC Haskell. In

Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015,
Ben Lippmeier (Ed.). ACM, 11–22. https://doi.org/10.1145/2804302.2804305

Adam Gundry, Conor McBride, and James McKinna. 2010. Type Inference in Context. In MSFP@ICFP. ACM, 43–54.

Mark P. Jones. 1994. A Theory of Qualified Types. Sci. Comput. Program. 22, 3 (1994), 231–256. https://doi.org/10.1016/0167-

6423(94)00005-0

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.48550/arXiv.2004.00396
https://doi.org/10.48550/arXiv.2004.00396
https://doi.org/10.1145/2804302.2804305
https://doi.org/10.1016/0167-6423(94)00005-0
https://doi.org/10.1016/0167-6423(94)00005-0

111:26 Emrich et al.

Andrew Kennedy. 2009. Types for Units-of-Measure: Theory and Practice. In CEFP (Lecture Notes in Computer Science,
Vol. 6299). Springer, 268–305.

George Kuan and David MacQueen. 2007. Efficient type inference using ranked type variables. In ML. ACM, 3–14.

Didier Le Botlan and Didier Rémy. 2003. ML
F
: raising ML to the power of System F. In ICFP. ACM, 27–38.

Daan Leijen. 2008. HMF: simple type inference for first-class polymorphism. In ICFP. ACM, 283–294.

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In MSFP (EPTCS, Vol. 153). 100–126.
Xavier Leroy and Michel Mauny. 1991. Dynamics in ML. In FPCA. Springer, 406–426.
Sam Lindley and James Cheney. 2012. Row-based effect types for database integration. In TLDI. ACM, 91–102.

Conor McBride and Ross Paterson. 2008. Applicative programming with effects. J. Funct. Program. 18, 1 (2008), 1–13.

https://doi.org/10.1017/S0956796807006326

J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. Proc. ACM
Program. Lang. 3, POPL (2019), 12:1–12:28.

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type Inference with Constrained Types. Theory Pract. Object
Syst. 5, 1 (1999), 35–55.

Frank Pfenning. 1993. On the Undecidability of Partial Polymorphic Type Reconstruction. Fundam. Inform. 19, 1/2 (1993),
185–199.

François Pottier. 2014. Hindley-Milner Elaboration in Applicative Style: Functional Pearl. In ICFP. ACM, 203–212.

François Pottier and Didier Rémy. 2005. The Essence of ML Type Inference. MIT Press, Chapter 10, 389–489.

Didier Rémy. 1992. Extension of ML Type System with a Sorted Equational Theory on Types. Technical Report RR-1766.
Institut National de Recherche en Informatique et en Automatique.

Claudio V. Russo and Dimitrios Vytiniotis. 2009. QML: Explicit First-class Polymorphism for ML. In ML. ACM, 3–14.

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A quick look at impredicativity. Proc.
ACM Program. Lang. 4, ICFP (2020), 89:1–89:29. https://doi.org/10.1145/3408971

Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded impredicative polymorphism.

In PLDI. ACM, 783–796.

Vincent Simonet and François Pottier. 2007. A constraint-based approach to guarded algebraic data types. ACM Trans.
Program. Lang. Syst. 29, 1 (2007), 1. https://doi.org/10.1145/1180475.1180476

Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X): Modular type

inference with local assumptions. J. Funct. Program. 21, 4-5 (2011), 333–412.
Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones. 2006. Boxy types: inference for higher-rank types and

impredicativity. In ICFP. ACM, 251–262.

Mitchell Wand. 1987. A simple algorithm and proof for type inference. Fundamenta Informaticae (1987).
J. B. Wells. 1994. Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and Undecidable. In

LICS. IEEE Computer Society, 176–185.

Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP Symb. Comput. 8, 4 (1995), 343–355.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/3408971
https://doi.org/10.1145/1180475.1180476

Constraint-based type inference for FreezeML 111:27

A PROOFS FOR SECTION 3.4
The proofs of Theorems 1 and 2 proceed via mutual induction on the structure of the term𝑀 . Both

proofs use the following lemma, but only on subterms of the term𝑀 in question.

Lemma 9. Let Δ′ = ftv(𝐴) − Δ and Δ; Γ ⊢ 𝑀 ok. Then principal(Δ, Γ, 𝑀,Δ′, 𝐴) iff mostgen(Δ, (𝑎),
Γ, J𝑀 : 𝑎K,Δ′, [𝑎 ↦→ 𝐴]).

The proof of Lemma 9 in turn uses both theorems directly.

We proceed by collecting auxiliary lemmas (including Lemma 9) in Appendix A.1. The two

subsequent subsections contain the proofs of Theorem 1, Theorem 2, respectively.

A.1 Auxiliary Lemmas
Lemma 10. Let𝑀 ∈ GVal and principal(Δ, Γ, 𝑀,Δ′, 𝐴). Then 𝐴 is a guarded type.

Proof. The only way for 𝐴 to be a top-level polymorphic type of a guarded value𝑀 is if𝑀 is

a plain (i.e, not frozen) variable 𝑥 of type ∀𝑎0, . . . , 𝑎𝑛 .𝑎𝑖 . However, the principal type of 𝑥 is 𝑎 for

some fresh polymorphic variable 𝑎 ∈ Δ′
, which is a guarded type. □

Lemma 11 (Well-formedness of constraint translation). Let Δ; Γ ⊢ 𝑀 ok and (Δ,Ξ) ⊢ 𝐴 ok. Then
Δ;Ξ; Γ ⊢ J𝑀 : 𝐴K ok holds.

Proof. By induction on structure of𝑀 . We observe that the only free type variables of J𝑀 : 𝐴K
are those appearing freely in 𝐴 and in type annotations appearing in𝑀 . By Δ; Γ ⊢ 𝑀 : 𝐴 we have

that all such free type variables in the annotations in𝑀 are rigid variables from Δ. Hence, the only
free unification variables of J𝑀 : 𝐴K are those in 𝐴.

□

Lemma 12 (Satisfiability implies well-formedness). If Δ;Ξ; Γ;𝛿 ⊢ 𝐶 then Δ;Ξ; Γ ⊢ 𝐶 ok.

Proof. We observe that the rules Sem-Eqiv, Sem-Freeze, Sem-Inst Sem-Def all (explicitly or

implicitly) require the types found in the constraint under consideration to be well-formed in

the context Δ;Ξ. The rule Sem-Mono imposes 𝑎 ∈ (Δ,Ξ). Finally, the rules Sem-Freeze, Sem-Inst
require 𝑥 ∈ Γ. □

See the note at the beginning of Appendix A, for an explanation of the dependencies between

Theorem 1, Theorem 2 and Lemma 9.

Lemma 9. Let Δ′ = ftv(𝐴) − Δ and Δ; Γ ⊢ 𝑀 ok. Then principal(Δ, Γ, 𝑀,Δ′, 𝐴) iff mostgen(Δ, (𝑎),
Γ, J𝑀 : 𝑎K,Δ′, [𝑎 ↦→ 𝐴]).

Proof. Recall the definitons of principal and mostgen:

principal(Δ, Γ, 𝑀,Δ′, 𝐴) =
Δ,Δ′

; Γ ⊢ 𝑀 : 𝐴 and (1)

(for all Δ′′, 𝐴′′ | if Δ,Δ′′
; Γ ⊢ 𝑀 : 𝐴′′

then there exists 𝛿 such that

Δ ⊢ 𝛿 : Δ′ ⇒★ Δ′′
and 𝛿 (𝐴) = 𝐴′′)

(2)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:28 Emrich et al.

mostgen(Δ, 𝑎, Γ, 𝛿, J𝑀 : 𝑎K,Δ′, [𝑎 ↦→ 𝐴]) =
(Δ,Δ′);𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ J𝑀 : 𝑎K and (3)

(for all Δ′′, 𝛿 ′′ | if (Δ,Δ′′);𝑎; Γ;𝛿 ′′ ⊢ J𝑀 : 𝑎K
then there exists 𝛿 such that

Δ ⊢ 𝛿 : Δ′ ⇒★ Δ′′
and 𝛿 ′′ = 𝛿 ◦ [𝑎 ↦→ 𝐴])

(4)

⇒ We apply Theorem 1 to (1), immediately yielding the desired property (3).
To show (4), we assume (Δ,Δ′′);𝑎; Γ;𝛿 ′′ ⊢ J𝑀 : 𝑎K, which implies that 𝛿 ′′ = [𝑎 ↦→ 𝐴′′] for
some 𝐴′′

.

By Theorem 2 this gives us (Δ,Δ′′); Γ ⊢ 𝑀 : 𝐴′′
. According to (2), there exists a 𝛿 with the

desired properties.

⇐ We apply Theorem 2 to (3), which gives us satisfaction of property (1).
To show (4), we assume Δ,Δ′′

; Γ ⊢ 𝑀 : 𝐴′′
. Theorem 1 then gives us (Δ,Δ′′);𝑎; Γ; [𝑎 ↦→ 𝐴′′] ⊢

J𝑀 : 𝑎K. According to (4) there exists an appropriate 𝛿 .

□

A.2 Proof of Theorem 1
Theorem 1 (Constraint generation is sound with respect to the typing judgement). Let

Δ; Γ ⊢ 𝑀 : 𝐴 and 𝑎 #Δ. Then Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ J𝑀 : 𝑎K holds.

Proof. By structural induction on𝑀 , focusing on the let cases.

Case let 𝑥 = 𝑀 ′ in 𝑁 ′, where𝑀 ′ ∈ GVal The derivation of Δ; Γ ⊢ 𝑀 : 𝐴 has the following form,

for some 𝐵, 𝐵′, 𝑎.

𝑎 = ftv(𝐵′) − Δ (Δ, 𝑎, 𝑀 ′, 𝐵′) ⇕ 𝐵

(Δ, 𝑎); Γ ⊢ 𝑀 ′
: 𝐵′ Δ; Γ, 𝑥 : 𝐵 ⊢ 𝑁 : 𝐴 principal(Δ, Γ, 𝑀 ′, 𝑎, 𝐵′)

Δ; Γ ⊢ let 𝑥 = 𝑀 ′ in 𝑁 : 𝐴

By 𝑀 ′ ∈ GVal we have 𝐵 = ∀𝑎.𝐵′
and J𝑀 : 𝑎K = let★ 𝑥 = ⊓𝑏.J𝑀 ′

: 𝑏K in J𝑁 ′
: 𝑎K. We

assume w.l.o.g. that 𝑏 #(Δ, 𝑎). By induction we have (Δ, 𝑎);𝑏; Γ; [𝑏 ↦→ 𝐵′] ⊢ J𝑀 ′
: 𝑏K and

Δ;𝑎; (Γ, 𝑥 : 𝐵); [𝑎 ↦→ 𝐴] ⊢ J𝑁 ′
: 𝑎K. We can weaken the former to (Δ, 𝑎); (𝑎, 𝑏); Γ; [𝑎 ↦→

𝐴,𝑏 ↦→ 𝐵′] ⊢ J𝑀 ′
: 𝑏K. By Lemma 9, principal(Δ, Γ, 𝑀 ′, 𝑎, 𝐵′) implies mostgen(Δ, 𝑏, Γ, J𝑀 ′

:

𝑏K, 𝑎, [𝑏 ↦→ 𝐵′]). According to Lemma 17 we can weaken this to mostgen(Δ, (𝑎, 𝑏), Γ, J𝑀 ′
:

𝑏K, (𝑎, 𝑐), [𝑎 ↦→ 𝑐, 𝑏 ↦→ 𝐵′]) for some fresh 𝑐 .

Let Δo B 𝑐 and 𝛿 ′ B [𝑐 ↦→ unit] and 𝛿m = [𝑎 ↦→ 𝑐, 𝑏 ↦→ 𝐵′]. Due to 𝑐 ∉ ftv(𝐵′) we have
𝛿 ′(𝛿 (𝑏)) = 𝛿 (𝐵′) = 𝐵′

.

We can then derive the following

mostgen(Δ, (𝑎, 𝑏), Γ, J𝑀 ′
: 𝑏K, (𝑎, 𝑐), 𝛿m)

Δo = ftv(𝛿m (𝑎)) − Δ 𝑎 = ftv(𝛿m (𝑏)) − Δ,Δo

Δ ⊢ 𝛿 ′ : Δo ⇒• · 𝐵′ = 𝛿 ′(𝛿m (𝑏))
(Δ, 𝑎); (𝑎, 𝑏); Γ;𝛿 [𝑎 ↦→ 𝐴,𝑏 ↦→ 𝐵′] ⊢ J𝑀 ′

: 𝑏K Δ;𝑎; (Γ, 𝑥 : 𝐵);𝛿 ⊢ J𝑁 ′
: 𝑎K

Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ let★ 𝑥 = ⊓𝑏.J𝑀 ′
: 𝑏K in J𝑁 ′

: 𝑎K

Case let 𝑥 = 𝑀 ′ in 𝑁 ′, where𝑀 ′ ∉ GVal We have a derivation of the same shape as in the pre-

vious case. However, by 𝑀 ′ ∉ GVal we have 𝐵 = 𝛿 (𝐵′) and J𝑀 : 𝑎K = let• 𝑥 = ⊓𝑏.J𝑀 ′
:

𝑏K in J𝑁 ′
: 𝑎K, for some 𝛿 such that Δ ⊢ 𝛿 : 𝑎 ⇒• ·.

Let Δo and 𝛿m as in the previous case and extend 𝛿 to 𝛿 ′ by setting 𝛿 ′(𝑎) = 𝑐 . This implies

𝐵 = 𝛿 (𝐵′) = 𝛿 ′(𝐵′) = 𝛿 (𝛿m (𝑏)).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:29

We also extend 𝛿 to 𝛿 ′′ by setting 𝛿 ′′(𝑎′) = 𝑎′ for all 𝑎′ ∈ Δ.
Using similar reasoning as in the previous casewe getmostgen(Δ, (𝑎, 𝑏), Γ, J𝑀 ′

: 𝑏K, (𝑎, 𝑐), 𝛿m),
Δ;𝑎; (Γ, 𝑥 : 𝐵); [𝑎 ↦→ 𝐴] ⊢ J𝑁 ′

: 𝑎K, and (Δ, 𝑎);𝑎; Γ; [𝑎 ↦→ 𝐴,𝑏 ↦→ 𝐵′] ⊢ J𝑀 ′
: 𝑏K. Applying

Lemma 18 to the latter using 𝛿 ′′ yields Δ; (𝑎, 𝑏);𝛿 ′′(Γ); [𝑎 ↦→ 𝛿 ′′(𝐴), 𝑏 ↦→ 𝛿 ′′(𝐵′)] ⊢ J𝑀 ′
: 𝑏K,

which is equivalent to Δ; (𝑎, 𝑏); Γ; [𝑎 ↦→ 𝐴,𝑏 ↦→ 𝐵] ⊢ J𝑀 ′
: 𝑏K,

We can then derive the following

mostgen(Δ, (𝑎, 𝑏), Γ, J𝑀 ′
: 𝑏K, (𝑎, 𝑐), 𝛿m)

Δ ⊢ 𝛿 ′ : (𝑎, 𝑐) ⇒• · 𝐵 = 𝛿 ′(𝛿m (𝑎))
Δ; (𝑎, 𝑏); Γ;𝛿 [𝑏 ↦→ 𝐵] ⊢ J𝑀 ′

: 𝑏K Δ;𝑎; (Γ, 𝑥 : 𝐵);𝛿 ⊢ J𝑁 ′
: 𝑎K

Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ let• 𝑥 = ⊓𝑏.J𝑀 ′
: 𝑏K in J𝑁 ′

: 𝑎K

Case let(𝑥 : 𝐵) = 𝑀 ′ in 𝑁 ′, where𝑀 ′ ∈ GVal: Let 𝑎, 𝐻 such that 𝐵 = ∀𝑎.𝐻 .

The derivation of Δ; Γ ⊢ 𝑀 ′
: 𝐴 has the following form, for some Δ′, 𝐴′

:

LetAnn

(Δ′, 𝐵′) = split(𝐵,𝑀) (Δ,Δ′); Γ ⊢ 𝑀 ′
: 𝐵′ Δ; (Γ, 𝑥 : 𝐵) ⊢ 𝑁 ′

: 𝐴

Δ; Γ ⊢ let (𝑥 : 𝐵) = 𝑀 ′ in 𝑁 ′
: 𝐴

By𝑀 ′ ∈ GVal, we have Δ′ = 𝑎, 𝐵′ = 𝐻 and J𝑀 : 𝐴K = (∀𝑎.J𝑀 ′
: 𝐻K)∧def (𝑥 : 𝐵) in J𝑁 ′

: 𝐴K.
Let 𝑏 be fresh. By induction, we have (Δ,Δ′);𝑏; Γ; [𝑏 ↦→ 𝐵′] ⊢ J𝑀 ′

: 𝑏K and Δ;𝑎; (Γ, 𝑥 :

𝐵); [𝑎 ↦→ 𝐴] ⊢ J𝑁 ′
: 𝐴K. By Lemma 19 we can substitute the former to (Δ,Δ′); ·; Γ; ∅ ⊢ J𝑀 ′

:

𝐻K.
Recall that an implicit precondition of Δ; (Γ, 𝑥 : 𝐵) ⊢ 𝑁 ′

: 𝐴 we have Δ ⊢ Γ ok, which implies

Δ ⊢ 𝐵 ok. Therefore, we have that ftv(𝐵) − Δ is empty and 𝐵 [𝑎/𝐴] = 𝐵.

We can now derive the desired judgement.

(Δ,Δ′);𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ J𝑀 ′
: 𝐻K

...

Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ (∀𝑎.J𝑀 ′
: 𝐻K)

for all 𝑎 ∈ ftv(𝐵) − Δ | Δ;Ξ; Γ;𝛿 ⊢ mono(𝑎)
Δ;Ξ; (Γ, 𝑥 : 𝐵 [𝑎/𝐴]);𝛿 ⊢ 𝐶

Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ def (𝑥 : 𝐵) in J𝑁 ′
: 𝐴K

Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ (∀𝑎.J𝑀 ′
: 𝐻K) ∧ def (𝑥 : 𝐵) in J𝑁 ′

: 𝐴K

Case let(𝑥 : 𝐴) = 𝑀 ′ in 𝑁 ′, where𝑀 ′ ∉ GVal: Analogous to previous case, with Δ′ = ∅, 𝐵′ = 𝐵.

□

A.3 Proof of Theorem 2
Theorem 2 (Constraint generation is complete with respect to the typing judgement).

If Δ; Γ ⊢ 𝑀 ok and Δ;𝑎; Γ;𝛿 ⊢ J𝑀 : 𝑎K, then Δ; Γ ⊢ 𝑀 : 𝛿 (𝑎).

Proof. We prove the following, slightly more general property by induction on𝑀 : If Δ; Γ ⊢ 𝑀 ok
and Δ;Ξ ⊢ 𝐴 ok and Δ;Ξ; Γ;𝛿 ⊢ J𝑀 : 𝐴K, then Δ; Γ ⊢ 𝑀 : 𝛿 (𝐴).
Note that by the implicit preconditions of Δ;Ξ; Γ;𝛿 ⊢ J𝑀 : 𝐴K we have Δ #Ξ, Δ ⊢ Γ ok, and

Δ ⊢ 𝛿 : Ξ ⇒★ ·. The latter implies Δ ⊢ 𝛿 (𝐴) ok.
We focus on the let cases.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:30 Emrich et al.

Case let 𝑥 = 𝑀 ′ in 𝑁 ′,𝑀 ′ ∈ GVal: We have Δ;Ξ; Γ;𝛿 ⊢ let★ 𝑥 = ⊓𝑏.J𝑀 ′
: 𝑏K in J𝑁 ′

: 𝐴K. The
derivation of this has the following form for some 𝐵, 𝑎,Δm,Δo, 𝛿m and 𝛿 ′:

mostgen(Δ, (Ξ, 𝑏), Γ, J𝑀 ′
: 𝑏K,Δm, 𝛿m)

Δo = ftv(𝛿m (Ξ)) − Δ 𝑎 = ftv(𝛿m (𝑏)) − Δ,Δo

Δ ⊢ 𝛿 ′ : Δo ⇒• · 𝐵 = 𝛿 ′(𝛿m (𝑏))
(Δ, 𝑎); (Ξ, 𝑏); Γ;𝛿 [𝑏 ↦→ 𝐵] ⊢ J𝑀 ′

: 𝑏K Δ;Ξ; (Γ, 𝑥 : ∀𝑎.𝐵);𝛿 ⊢ J𝑁 ′
: 𝐴K

Δ;Ξ; Γ;𝛿 ⊢ let★ 𝑥 = ⊓𝑏.J𝑀 ′
: 𝑏K in J𝑁 ′

: 𝐴K

By induction, this gives us (Δ, 𝑎); Γ ⊢ 𝑀 ′
: 𝐵 and Δ; (Γ, 𝑥 : ∀𝑎.𝐵) ⊢ 𝑁 ′

: 𝛿 (𝐴). By𝑀 ′ ∈ GVal,
we have Δ ⊢ 𝑀 ′

and Δ ⊢ Γ. According to Lemma 11 this implies Δ;𝑏; Γ ⊢ J𝑀 ′
: 𝑏K ok (i.e., 𝑏 is

the only free flexible variable of J𝑀 ′
: 𝑏K). This means that J𝑀 ′

: 𝑏K leaves all variables of
Ξ entirely unconstrained. Therefore, we have that 𝛿m maps all 𝑎 ∈ Ξ to pairwise different

variables 𝑐 from Δm and 𝑐 ∉ ftv(𝛿m (𝑏)) for all such 𝑐 . This implies 𝑎 = ftv(𝛿m (𝑏)) − Δ,Δo =

ftv(𝛿m (𝑏)) −Δ,Δo (i.e., removing Δo from the subtracted context has no effect) and 𝐵 = 𝛿m (𝑏)
(i.e., applying 𝛿 ′ to 𝛿m (𝑏) has no effect).

Consequently, wemay strengthenmostgen(Δ, (Ξ, 𝑏), Γ, J𝑀 ′
: 𝑏K,Δm, 𝛿m) tomostgen(Δ, 𝑏, Γ, J𝑀 ′

:

𝑏K, 𝑎, [𝑏 ↦→ 𝛿m (𝑏)]).Wemay then apply Lemma 9 to the latter, yielding principal(Δ, Γ, 𝑀 ′, 𝑎, 𝐵).
Finally, Lemma 10 shows us that 𝐵 is a guarded type, and we may refer to it as 𝐻 .

We can therefore derive the desired property Δ; Γ ⊢ let 𝑥 = 𝑀 ′ in 𝑁 ′
: 𝛿 (𝐴) as follows:

𝑎 = ftv(𝐻) − Δ
(Δ, 𝑎, 𝑀 ′, 𝐻) ⇕ ∀𝑎.𝐻 (Δ, 𝑎); Γ ⊢ 𝑀 ′

: 𝐻 Δ; (Γ, 𝑥 : ∀𝑎.𝐻) ⊢ 𝑁 ′
: 𝛿 (𝐴)

principal(Δ, Γ, 𝑀 ′, 𝑎, 𝐻)
Δ; Γ ⊢ let 𝑥 = 𝑀 ′ in 𝑁 ′

: 𝛿 (𝐴)

Case let 𝑥 = 𝑀 ′ in 𝑁 ′ if𝑀 ′ ∉ GVal: This case is largely analogous to the previous one.

This time we have a derivation of the form:

mostgen(Δ, (Ξ, 𝑎), Γ, J𝑀 ′
: 𝑏K,Δm, 𝛿m)

Δ ⊢ 𝛿 ′ : Δm ⇒• · 𝐵 = 𝛿 ′(𝛿m (𝑏))
Δ; (Ξ, 𝑎); Γ;𝛿 [𝑏 ↦→ 𝐵] ⊢ J𝑀 ′

: 𝑏K Δ;Ξ; (Γ, 𝑥 : 𝐵);𝛿 ⊢ J𝑁 ′
: 𝐴K

Δ;Θ; Γ;𝛿 ⊢ let• 𝑥 = ⊓𝑏.J𝑀 ′
: 𝑏K in J𝑁 ′

: 𝐴K

Let 𝐴′ B 𝛿m (𝑏) and 𝑎 B ftv(𝐴′) − Δ. By mostgen(Δ, (Ξ, 𝑎), Γ, J𝑀 ′
: 𝑏K,Δm, 𝛿m) we have

(Δ,Δm); (Ξ, 𝑎); Γ;𝛿m ⊢ J𝑀 ′
: 𝑏K. By induction, this implies (Δ,Δm); Γ ⊢ 𝑀 ′

: 𝐴′
, which we

can strengthen to (Δ, 𝑎); Γ ⊢ 𝑀 ′
: 𝐴′

We obtain Δ; (Γ, 𝑥 : 𝐵) ⊢ 𝛿 (𝐴) directly by applying the induction hypothesis to Δ;Ξ; (Γ, 𝑥 :

𝐵);𝛿 ⊢ J𝑁 ′
: 𝐴K. Likewise, we obtain principal(Δ, Γ, 𝑀 ′, 𝑎, 𝐴′) using the same reasoning as in

the previous case.

Finally, we observe that Δ ⊢ 𝛿 ′↾�̃� : 𝑎 ⇒ · holds and 𝐵 = 𝛿 ′↾�̃� (𝐴′). Therefore, we have

(Δ, 𝑎, 𝑀,𝐴′) ⇕ 𝐵

Thus, we can derive the following:

𝑎 = ftv(𝐴′) − Δ (Δ, 𝑎, 𝑀,𝐴′) ⇕ 𝐵

Δ, 𝑎; Γ ⊢ 𝑀 : 𝐴′ Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝛿 (𝐴) principal(Δ, Γ, 𝑀, 𝑎,𝐴′)
Δ; Γ ⊢ let 𝑥 = 𝑀 ′ in 𝑁 ′

: 𝛿 (𝐴)

Case let (𝑥 : 𝐵) = 𝑀 ′ in 𝑁 ′ if𝑀 ′ ∈ GVal: Let 𝑏 and 𝐻 such that 𝐵 = ∀𝑏.𝐻 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:31

We then have Δ;Ξ; Γ;𝛿 ⊢ (∀𝑏.J𝑀 ′
: 𝐻K) ∧ def (𝑥 : 𝐵) in J𝑁 ′

: 𝐴K. The derivation tree of

this contains derivations for (Δ, ˜𝑏);Ξ; Γ;𝛿 ⊢ J𝑀 ′
: 𝐻K and Δ;Ξ; (Γ, 𝑥 : 𝛿 (𝐵));𝛿 ⊢ J𝑁 ′

: 𝐴K.
By Δ; Γ ⊢ 𝑀 ok we have Δ ⊢ 𝐵 (i.e., 𝐵 contains no flexible variables). Therefore, 𝛿 (𝐵) = 𝐵 and

𝛿 (𝐻) = 𝐻 . By induction, this then gives us (Δ, 𝑎); Γ ⊢ 𝑀 ′
: 𝐻 and Δ; (Γ, 𝑥 : 𝐵) ⊢ 𝑁 ′

: 𝛿 (𝐴).
Hence, we can derive

(𝑎, 𝐻) = split(𝐵,𝑀 ′) (Δ, 𝑎); Γ ⊢ 𝑀 ′
: 𝐻 Δ; Γ, 𝑥 : 𝐵 ⊢ 𝑁 ′

: 𝛿 (𝐴)
Δ; Γ ⊢ let (𝑥 : 𝐵) = 𝑀 ′ in 𝑁 ′

: 𝛿 (𝐴)
Case let (𝑥 : 𝐵) = 𝑀 ′ in 𝑁 ′ if𝑀 ′ ∉ GVal This case is similar to the previous one:We haveΔ;Ξ; Γ;𝛿 ⊢

J𝑀 ′
: 𝐵K) ∧ def (𝑥 : 𝐵) in J𝑁 ′

: 𝐴K this time and 𝛿 (𝐵) = 𝐵 due to Δ; Γ ⊢ 𝑀 ok.
We get Δ; Γ ⊢ 𝑀 ′

: 𝐵 and Δ; (Γ, 𝑥 : 𝐵) ⊢ 𝑁 ′
: 𝛿 (𝐴) by induction and can derive

(·, 𝐵) = split(𝐵,𝑀 ′) Δ; Γ ⊢ 𝑀 ′
: 𝐵 Δ; Γ, 𝑥 : 𝐵 ⊢ 𝑁 ′

: 𝛿 (𝐴)
Δ; Γ ⊢ let (𝑥 : 𝐵) = 𝑀 ′ in 𝑁 ′

: 𝛿 (𝐴)
□

B PROOFS FOR SECTION 4.2
We again proceed by collecting auxiliary lemmas in Appendix B.1 before proving each theorem

from Section 4.2 in an individual subsection.

B.1 Auxiliary Lemmas
The following lemma states how solutions for constraints𝔘(Θ, 𝜃) look like. The lemma is somewhat

specialised for the specific places where we use it, by introducing an extra type context Δ′
and an

existential quantifier around 𝔘(Θ, 𝜃).

Lemma 13. Let Δ ⊢ 𝜃 : Θ ⇒ Θ and Δ,Δ′ ⊢ Γ ok and ftv(Θ) = Ξ, 𝑎.
Then we have

(Δ,Δ′);Ξ; Γ;𝛿 ⊢ ∃𝑎.𝔘(Θ, 𝜃)
iff

there exists 𝜃 ′ such that Δ,Δ′ ⊢ 𝜃 ′ : Θ ⇒ · and 𝛿 = (𝜃 ′ ◦ 𝜃)↾Ξ.

Proof. By definition, the subconstraint𝔘(𝜃) of𝔘(Θ, 𝜃) contains constraints of the form 𝑎 ∼ 𝜃 (𝑎)
for all 𝑎 in Θ. These constraints are satisfied by exactly those substitutions 𝛿 refining 𝜃 . In addition,

the • subconstraints in 𝔘(Θ) are satisfied iff the refinement respects the restrictions in Θ. □

The next lemma states how most general solutions of constraints 𝔘(Θ, 𝜃) look like.

Lemma 14. Let the following conditions hold:
• Δ ⊢ 𝜃 : Θ ⇒ Θ
• ftv(Θ) = Ξ, 𝑎
• Δ ⊢ Γ ok
• 𝑏 ≈ ftv(𝜃) − Δ

Then we have
mostgen((Δ,Δ′),Ξ, Γ, ∃𝑎.𝔘(Θ, 𝜃),Δm, 𝛿m)

iff
there exists 𝑐 ⊆ Δm s.t. 𝛿m = ([𝑏 ↦→ 𝑐] ◦ 𝜃)↾Ξ

Proof. Follows directly from Lemma 13 and the observation that the most general solution of

𝔘(Θ, 𝜃) is the one that maps all flexible variables in ftv(𝜃) to fresh, pairwise disjoint rigid variables.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:32 Emrich et al.

Observe that by assumption Δ ⊢ 𝜃 : Θ ⇒ Θ and the fact that rigid variables are considered

monomorphic we have Δ ⊢ [𝑏 ↦→ 𝑐] ◦ 𝜃 : Θ ⇒ · as well. □

Lemma 15. Let 𝐶1, 𝐶2, Δ,Ξ, 𝛿 and 𝐹 be given and let the following condition hold: for all Δ′, 𝛿 ′ we
have (Δ, rc(𝐹),Δ′); (Ξ, fc(𝐹));𝛿 ′(tc(𝐹));𝛿 ′ ⊢ 𝐶1 iff (Δ, rc(𝐹),Δ′); (Ξ, fc(𝐹));𝛿 ′(tc(𝐹));𝛿 ′ ⊢ 𝐶2.

Then we have have Δ;Ξ; ·;𝛿 ⊢ 𝐹 [𝐶1] iff Δ;Ξ; ·;𝛿 ⊢ 𝐹 [𝐶2].

Proof. By induction on structure of 𝐹 , observing that any judgement involving a constraint with

subconstraint 𝐶1 can be replaced by a corresponding judgement involving 𝐶2 (and vice versa). □

Lemma 16 (Stack machine steps preserve well-formedness of states). If 𝑠 ok and 𝑠 → 𝑠 ′ then 𝑠 ′ ok.

Proof. By case analysis over which stack machine rule was applied. □

Lemma 17 (Weakening mostgen). Let mostgen(Δ,Ξ, Γ,𝐶,Δm, 𝛿m) and (Δ,Ξ,Δm) #(𝑎,𝑏). Then we
have mostgen(Δ, (Ξ, 𝑎), Γ,𝐶, (Δm, 𝑏), 𝛿m [𝑎 ↦→ 𝑏]).

Proof. Bymostgen(Δ,Ξ, Γ,𝐶,Δm, 𝛿m)wehave (Δ,Δm);Ξ; Γ;𝛿m ⊢ 𝐶 and therefore (Δ,Δm);Ξ; Γ ⊢
𝐶 ok (cf. Lemma 12). This means that none of the variables in 𝑎 are constrained in any way by 𝐶 ,

meaning that the most general solution maps them to pairwise disjoint variables, like 𝑏. □

Lemma 18 (Refinement). LetΞ #Δ′. IfΔ;Ξ; Γ;𝛿 ⊢ 𝐶 andΔ′ ⊢ 𝛿 ′ : Δ ⇒• · thenΔ′
;Ξ;𝛿 ′(Γ);𝛿 ′◦𝛿 ⊢ 𝐶 .

Proof. By structural induction on𝐶 , observing that for all𝑎 ∈ Ξ, 𝑅 ∈ {•,★}we haveΔ ⊢𝑅 𝛿 (𝑎) ok
iff Δ′ ⊢𝑅 𝛿 ′(𝛿 (𝑎)) ok. □

Lemma 19 (Substitution). If Δ; (Ξ, 𝑎); Γ;𝛿 [𝑎 ↦→ 𝐴] ⊢ 𝐶 then Δ;Ξ; Γ;𝛿 ⊢ 𝐶 [𝑎/𝐴].

Proof. By structural induction on 𝐶 . Observe that the substitution does not interfere with

generalisation: The variable 𝑎 is already in scope and therefore not subject to generalisation by any

let constraint within 𝐶 . □

B.2 Proof of Theorem 3
Theorem 3 (Preservation). If (∀Δ :: ∃Ξ :: 𝐹0,Θ0, 𝜃0,𝐶0) ok and

(∀Δ :: ∃Ξ :: 𝐹0,Θ0, 𝜃0,𝐶0) → (∀Δ :: ∃Ξ :: 𝐹1,Θ1, 𝜃1,𝐶1)
then

Δ;Ξ; ·;𝛿 ⊢ 𝐹0 [𝐶0 ∧𝔘(Θ0, 𝜃0)] iff Δ;Ξ; ·;𝛿 ⊢ 𝐹1 [𝐶1 ∧𝔘(Θ1, 𝜃1)]

Proof. We carry out the proof by case analysis of the stack machine reduction rules. Let 𝑠 be

the state before, and 𝑠 ′ the state after the step.
We focus on the let rules.

• Case S-LetPolyPop: We have that 𝑠 is of the form (∀Δ :: ∃Ξ :: 𝐹 :: let★ 𝑥 = ⊓𝑎.□ in 𝐶 ::

∃𝑎,Θ0, 𝜃0, true) for some 𝐹,𝐶 , and 𝑎 and assume that the following conditions imposed by

S-LetPolyPop hold:

𝑎′; 𝑎′′ = partition((˜𝑏, 𝑎), 𝜃0,Θ0)
𝐴 = 𝜃0 (𝑎)
𝑐 = ftv(𝐴) ∩ 𝑎′

𝐵 = ∀𝑐.𝐴
Θ1 = Θ0 − 𝑎′

𝜃1 = 𝜃0↾Θ1

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:33

We need to show

Δ;Ξ; ·;𝛿 ⊢ 𝐹 :: let★ 𝑥 = ⊓𝑎.□ in 𝐶 :: ∃𝑎[true ∧𝔘(Θ0, 𝜃0)]
iff

Δ;Ξ; ·;𝛿 ⊢ 𝐹 :: ∃𝑎′′[def (𝑥 : 𝐵) in 𝐶 ∧𝔘(Θ1, 𝜃1)],
which is equivalent to

Δ;Ξ; ·;𝛿 ⊢ 𝐹 [𝐶 ′
0
]

iff

Δ;Ξ; ·;𝛿 ⊢ 𝐹 [𝐶 ′
1
]

if we define 𝐶 ′
0
:= let★ 𝑥 = ⊓𝑎.∃𝑎.𝔘(Θ0, 𝜃0) in 𝐶 and 𝐶 ′

1
:= ∃𝑎′′.(def (𝑥 : 𝐵) in 𝐶) ∧

𝔘(Θ1, 𝜃1).
We can prove this equivalence directly using Lemma 15. In order to apply this lemma, we need

to show that the following holds: For all Δ̂, ˆ𝛿 we have (Δ, rc(𝐹), Δ̂); (Ξ, fc(𝐹)); ˆ𝛿 (tc(𝐹)); ˆ𝛿 ⊢ 𝐶 ′
0

iff (Δ, rc(𝐹), Δ̂); (Ξ, fc(𝐹)); ˆ𝛿 (tc(𝐹)); ˆ𝛿 ⊢ 𝐶 ′
1

To this end, suppose Δ̂, and ˆ𝛿 are given. Let Δ′ B Δ, rc(𝐹), Δ̂ and Ξ′ B Ξ, fc(𝐹) and Γ′ B
ˆ𝛿 (tc(𝐹)).
=⇒ : We assume Δ′

;Ξ′
; Γ′; ˆ𝛿 ⊢ 𝐶 ′

0
(1). The derivation of this must have the following form,

for some Δm, 𝛿m,Δo, 𝑏, 𝛿
′, 𝐴′

:

mostgen(Δ′, (Ξ′, 𝑎), Γ′, ∃𝑎.𝔘(Θ0, 𝜃0),Δm, 𝛿m)
Δo = ftv(𝛿m (Ξ′)) − Δ′ 𝑏 = ftv(𝛿m (𝑎)) − Δ′,Δo

Δ′ ⊢ 𝛿 ′ : Δo ⇒• · 𝐴′ = 𝛿 ′(𝛿m (𝑎))
(Δ′, ˜𝑏); (Ξ′, 𝑎); Γ′; ˆ𝛿 [𝑎 ↦→ 𝐴′] ⊢ ∃𝑎.𝔘(Θ0, 𝜃0) Δ′

;Ξ′
; (Γ′, 𝑥 : ∀𝑏.𝐴′); ˆ𝛿 ⊢ 𝐶

Δ′
;Ξ′

; Γ′; ˆ𝛿 ⊢ let★ 𝑥 = ⊓𝑎.∃𝑎.𝔘(Θ0, 𝜃0) in 𝐶

We can assume w.l.o.g. that the variables in Δm are fresh.

By 𝑠 ok and 𝑠 ′ ok, we have ftv(Θ0) = (Ξ, 𝑎, 𝑎) as well as idempotency of 𝜃0 and 𝜃1.

Let Ξf B ftv(𝜃0) − Δ′
, which implies Ξf ⊆ Θ. By Lemma 14 there exists a bijection 𝛿r such

that Δm ⊢ 𝛿r : Ξf ⇒• · and 𝛿m = (𝛿r ◦ 𝜃0)↾(Ξ′,𝑎) (2).
We observe 𝛿r (𝑎′′) ⊆ Δo. We can now define 𝛿 ′′ such that for all 𝑏 ∈ (Ξ′, 𝑎′′) we have

𝛿 ′′(𝑏) =
{
ˆ𝛿 (𝑏) if 𝑏 ∈ Ξ′

𝛿 ′(𝛿r (𝑏)) if 𝑏 ∈ 𝑎′′

which yields Δ′ ⊢ 𝛿 ′′ : (Ξ′, 𝑎′′) ⇒★ · (3).
Next, we show 𝛿r (𝑐) = 𝑏 (4):

𝛿r (𝑐) = 𝛿r (ftv(𝜃0 (𝑎)) ∩ 𝑎′)
= 𝛿r (ftv(𝜃0 (𝑎)) − Ξ′ − 𝑎′′ − Δ′)

(by ftv(𝜃0 (𝑎)) ⊆ Δ′,Ξ′, 𝑎′, 𝑎′′)
= 𝛿r (ftv(𝜃0 (𝑎)) − ftv(𝜃0 (Ξ′)) − 𝑎′′ − Δ′)

(by 𝜃0 (𝑏) = 𝑏 for all 𝑏 ∈ ftv(𝜃 (𝑎)) and 𝑎′ #ftv(𝜃 (Ξ′)) ⊆ Δ′,Ξ′, 𝑎′′)
= 𝛿r (ftv(𝜃0 (𝑎)) − ftv(𝜃0 (Ξ′)) − Δ′)

(by 𝑎′′ ⊆ ftv(𝜃0 (Ξ′)))
= ftv(𝛿m (𝑎)) − ftv(𝛿m (Ξ′)) − Δ′

(by (2))
= ftv(𝛿m (𝑎)) − Δ′,Δo

= 𝑏

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:34 Emrich et al.

We now show 𝛿 ′′(𝑐) = 𝛿 ′(𝛿r (𝑐)) for all 𝑐 ∈ ftv(𝜃0 (𝑎)) ∩ (Ξ′, 𝑎′′) (5). First, we observe that
for all such 𝑐 ∈ 𝑎′′ this holds by definition of 𝛿 ′′. Next, by (Δ′, ˜𝑏); (Ξ′, 𝑎); Γ′;𝛿 ′ ⊢ ∃𝑎.𝔘(Θ0, 𝜃0)
(see derivation of (1)) and Lemma 13 we have that there exists 𝛿s such that (Δ′, ˜𝑏) ⊢ 𝛿s :

(Ξ′, 𝑎, 𝑎) ⇒★ · and 𝛿 ′ = (𝛿s ◦ 𝜃0)↾(Ξ′,𝑎) (6). We have 𝜃0 (𝑏) = 𝑏 for all𝑏 ∈ ftv(𝜃0) and therefore
𝛿s (𝑏) = 𝛿 ′(𝑏) (7) for any such 𝑏. Using this, we observe

𝛿 ′(𝑎)
= 𝛿s (𝜃0 ((𝑎)) (by (6))

= 𝐴′
(by def. of 𝛿 ′)

= 𝛿 ′(𝛿m (𝑎)) (by def. of 𝐴′
)

= 𝛿 ′(𝛿r (𝜃0 (𝑎))) (by (2))

This implies that for all 𝑏 ∈ ftv(𝜃0 (𝑎)) ∩ Ξ′
we have 𝛿 ′(𝛿r (𝑏)) = 𝛿s (𝑏)

(7)
= 𝛿 ′(𝑏) = 𝛿 ′′(𝑏) and

therefore (5) holds.

We now show that 𝛿 ′′(𝐵) is alpha-equivalent to ∀ ˜𝑏.𝐴′
:

𝛿 ′′(𝐵) = 𝛿 ′′(∀𝑐.𝜃0 (𝑎))
= ∀𝑐.𝛿 ′′(𝜃0 (𝑎))

(due to (3), 𝑐 #Ξ′, 𝑎′′ and 𝑐 #Δ′,Δm)
= ∀𝑏.

(
𝛿 ′′(𝜃0 (𝑎)) [𝑐 ↦→ 𝑏]

)
(due to (4), 𝑐 #𝑏)

= ∀𝑏.𝛿 ′(𝛿r (𝜃0 (𝑎)))
(due to (2), (5), 𝛿 ′′(𝑏) = 𝑏 for all 𝑏 ∈ 𝑏)

= ∀𝑏.𝛿 ′(𝛿m (𝑎))
= ∀𝑏.𝐴′

Thismeans that byΔ′
;Ξ′

; (Γ′, 𝑥 : ∀𝑏.𝐴′); ˆ𝛿 ⊢ 𝐶 (see derivation of (1)) we also haveΔ′
;Ξ′

; (Γ′, 𝑥 :

𝛿 ′′(𝐵)); ˆ𝛿 ⊢ 𝐶 , which we can weaken to Δ′
; (Ξ′, 𝑎′′); (Γ′, 𝑥 : 𝛿 ′′(𝐵));𝛿 ′′ ⊢ 𝐶 (8).

We now show that for all 𝑏 ∈ ftv(𝐵) − Δ′
we have Δ′

;Ξ′
; Γ′;𝛿 ′′ ⊢ mono(𝑏) (9): We have

ftv(𝐵) − Δ′ = ftv(∀𝑐.𝜃0 (𝑎)) − Δ′ ⊆ Ξ, 𝑎′′. By (5) we have 𝛿 ′′(𝑏) = 𝛿 ′(𝛿r (𝑏)) for any such 𝑏.

By Δ′ ⊢ 𝛿 ′ : Δo ⇒• · and 𝛿r being a bijection on variables, we have Δ′ ⊢• 𝛿 ′′(𝑏) ok.
We now show Δ′

; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ 𝔘(Θ1, 𝜃1) (10): Recall that per (6), we have 𝛿 ′ =

(𝛿s ◦ 𝜃0)↾(Ξ′,𝑎) , where 𝛿 ′ and 𝛿 ′′ coincide on Ξ′
. Further, 𝜃0 (𝑏) = 𝑏 for all 𝑏 ∈ 𝑎′′. We can

therefore apply Lemma 13 to 𝛿 ′′ to obtain (10).

Using (8), (9), and (10) we can now derive Δ′
;Ξ′

; Γ′; ˆ𝛿 ⊢ 𝐶 ′
1
as follows:

Δ′
; (Ξ′, 𝑎′′); (Γ′, 𝑥 : 𝛿 ′′𝐵);𝛿 ′′ ⊢ 𝐶 for all 𝑏 ∈ ftv(𝐵) − Δ′ | Δ′

;Ξ′
; Γ′;𝛿 ′′ ⊢ mono(𝑏)

Δ′
; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ def (𝑥 : 𝐵) in 𝐶

Δ′
; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ 𝔘(Θ1, 𝜃1)

Δ′
; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ (def (𝑥 : 𝐵) in 𝐶) ∧𝔘(Θ1, 𝜃1)

...

Δ′
;Ξ′

; Γ′; ˆ𝛿 ⊢ ∃𝑎′′.(def (𝑥 : 𝐵) in 𝐶) ∧𝔘(Θ1, 𝜃1)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:35

⇐= : We assume Δ′
;Ξ′

; Γ′; ˆ𝛿 ⊢ 𝐶 ′
1
(11). The derivation of this must have the following

form for some 𝛿 ′′:

...

Δ′
; (Ξ′, 𝑎′′); (Γ′, 𝑥 : 𝛿 ′′𝐵);𝛿 ′′ ⊢ 𝐶

for all 𝑏 ∈ ftv(𝐵) − Δ′ | Δ′
;Ξ′

; Γ′;𝛿 ′′ ⊢ mono(𝑏)
Δ′
; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ def (𝑥 : 𝐵) in 𝐶

...

Δ′
; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ 𝔘(Θ1, 𝜃1)

Δ′
; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ (def (𝑥 : 𝐵) in 𝐶) ∧𝔘(Θ1, 𝜃1)

...

Δ′
;Ξ′

; Γ′; ˆ𝛿 ⊢ ∃𝑎′′.(def (𝑥 : 𝐵) in 𝐶) ∧𝔘(Θ1, 𝜃1)

This immedately gives us Δ′ ⊢ 𝛿 ′′ : (Ξ′, 𝑎′′) ⇒★ · (12).
LetΞf be defined as in the⇒ case and let 𝛿r be a bijection fromΞf to fresh variables. Further,

let Δm B ftv(𝛿r) and 𝛿m B (𝛿r ◦ 𝜃0)↾(Ξ′,𝑎) . By Lemma 14 we then have mostgen(Δ′, (Ξ′, 𝑎),
Γ′, ∃𝑎.𝔘(Θ0, 𝜃0),Δm, 𝛿m). We may now define Δo and 𝑏 as in the ⇒ case, making each of

them a subset of Δm.

We now define 𝛿 ′ for all 𝑏 ∈ Δo as follows:

𝛿 ′(𝑏) =
{
𝛿 ′′(𝛿−1

r
(𝑏)) if 𝛿−1

r
(𝑏) ∈ ftv(𝜃 (𝑎)) − 𝑎′ − Δ′

unit otherwise

We have 𝑎′ ⊆ 𝑐 and therefore ftv(𝐵) = ftv(∀𝑐.𝜃 (𝑎)) = ftv(𝜃 (𝑎))−𝑎′. Thus, by the definition
above and the second premise of the derivation of Δ′

; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢ def (𝑥 : 𝐵) in 𝐶 , we

have Δ′ ⊢ 𝛿 ′ : Δo ⇒• ·.
The definition of 𝛿 ′ immedately yields 𝛿 ′′(𝑐) = 𝛿 ′(𝛿r (𝑐)) for all 𝑐 ∈ ftv(𝜃0 (𝑎)) ∩ (Ξ′, 𝑎′′).

(which we called (5) in the ⇒ direction). We define 𝐴′ B 𝛿 ′(𝛿m (𝑎)). Together with (12), we

can use the same reasoning as in the⇒ case to obtain 𝑏 = 𝛿r (𝑐) and the alpha-equivalence

of and 𝛿 ′′(𝐵) and ∀𝑏.𝐴′
.

Hence, Δ′
; (Ξ′, 𝑎′′); (Γ′, 𝑥 : 𝛿 ′′𝐵);𝛿 ′′ ⊢ 𝐶 (see derivation of (11)) is equivalent to Δ′

; (Ξ′, 𝑎′′);
(Γ′, 𝑥 : ∀𝑏.𝐴′);𝛿 ′′ ⊢ 𝐶 . We have Δ′ ⊢ ∀𝑏.𝐴′ ok and (Δ, rc(𝐹));Ξ′

; (tc(𝐹), 𝑥 : ⊥) ⊢ 𝐶 ok which

means we can weaken it to Δ′
;Ξ′

; (Γ′, 𝑥 : ∀𝑏.𝐴′); ˆ𝛿 ⊢ 𝐶 .
Next, we define 𝛿 ′ B ˆ𝛿 [𝑎 ↦→ 𝐴′] as in the ⇒ case and show that (Δ′, ˜𝑏); (Ξ′, 𝑎); Γ′;𝛿 ′ ⊢

∃𝑎.𝔘(Θ0, 𝜃0) (13) holds. To this end, we wish to apply Lemma 13 to Δ′
; (Ξ′, 𝑎′′); Γ′;𝛿 ′′ ⊢

𝔘(Θ1, 𝜃1) (see derivation of (11)), which gives us the existence of 𝜃 ′1 such that Δ′ ⊢ 𝜃 ′
1
: Θ1 ⇒ ·

and 𝛿 ′′ = 𝜃 ′
1
◦ 𝜃1 (14). We now show that the necessary preconditions of the lemma are

satisfied.

Recall that ftv(Θ1) = ftv(Θ0) − 𝑎′ and 𝑐 ⊆ 𝑎′. We now define 𝜃 ′
0
as an extension of

𝜃 ′
1
by setting 𝜃 ′

0
(𝑐) = 𝛿r (𝑐) for all 𝑐 ∈ 𝑐 , and 𝜃 ′

0
(𝑐) = unit for all 𝑐 ∈ 𝑎′ − 𝑐 . This implies

Δ′, ˜𝑏 ⊢ 𝜃 ′
0
: Θ0 ⇒ ·. We now show that 𝛿 ′ = (𝜃 ′

0
◦ 𝜃0)↾(Ξ′,𝑎) (15). For all𝑏 ∈ Ξ′

we immediately

get 𝜃 ′
0
(𝜃0 (𝑏)) = 𝛿 ′′(𝑏) by Ξ′ ⊆ ftv(Θ1) and (14).

It remains to show that 𝜃 ′
0
(𝜃0 (𝑎)) = 𝛿 ′(𝑎) def.

= 𝐴′
. By definition of 𝐴′

and 𝛿m we have

𝐴′ = 𝛿 ′(𝛿m (𝑎)) = 𝛿 ′(𝛿r (𝜃0 (𝑎)). Therefore, it sufficies to show that for all 𝑏 ∈ ftv(𝜃0 (𝑎)) − Δ′

we have 𝜃 ′
0
(𝑏) = 𝛿 ′(𝛿r (𝑏)). If 𝑏 ∈ (Ξ′, 𝑎′′) we have 𝜃 ′

0
(𝑏) = 𝜃 ′

1
(𝑏). By 𝑏 ∈ ftv(𝜃0) we have

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:36 Emrich et al.

𝜃0 (𝑏) = 𝑏, which means that (14) imposes 𝜃 ′
1
(𝑏) = 𝛿 ′′(𝑏). By definition of 𝛿 ′ we then have

𝜃 ′
0
(𝑏) = 𝜃 ′

1
(𝑏) = 𝛿 ′′(𝑏) = 𝛿 ′′(𝛿−1

r
(𝛿r (𝑏))) = 𝛿 ′(𝛿r (𝑏)). Otherwise, if𝑏 ∈ 𝑎′, we have 𝛿r (𝑏) ∉ Δo

and therefore 𝜃 ′
0
(𝑏) = 𝛿r (𝑏) = 𝛿 ′(𝛿r (𝑏)). Finally, having shown (15) we may apply Lemma 13

to obtain (13).

In conclusion, we can now derive Δ′
;Ξ′

; Γ′; ˆ𝛿 ⊢ 𝐶 ′
1
as follows:

mostgen(Δ′, (Ξ′, 𝑎), Γ′, ∃𝑎.𝔘(Θ0, 𝜃0),Δm, 𝛿m)
Δo = ftv(𝛿m (Ξ′)) − Δ′ 𝑏 = ftv(𝛿m (𝑎)) − Δ′,Δo

Δ′ ⊢ 𝛿 ′ : Δo ⇒• · 𝐴′ = 𝛿 ′(𝛿m (𝑎))
(Δ′, ˜𝑏); (Ξ′, 𝑎); Γ′; ˆ𝛿 [𝑎 ↦→ 𝐴′] ⊢ ∃𝑎.𝔘(Θ0, 𝜃0) Δ′

;Ξ′
; (Γ′, 𝑥 : ∀𝑏.𝐴′); ˆ𝛿 ⊢ 𝐶

Δ′
;Ξ′

; Γ′; ˆ𝛿 ⊢ let★ 𝑥 = ⊓𝑎.∃𝑎.𝔘(Θ0, 𝜃0) in 𝐶

□

B.3 Proof of Theorem 4
Theorem 4 (Progress). Let (𝐹,Θ, 𝜃,𝐶) ok and 𝐹 [𝐶] ≠ ∀Δ.∃Ξ.true for all Δ,Ξ. Further, let

·; ·; ·; ∅ ⊢ 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)]. Then there exists a state 𝑠1 such that (𝐹,Θ, Γ, 𝜃,𝐶) → 𝑠1.

Proof. Let 𝑠 := (𝐹,Θ, 𝜃,𝐶). By assumption, we have ·; ·; ·; ∅ ⊢ 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)] (1).
We first assume 𝐶 ≠ true and show that one of the rules in Figure 9 is applicable.

• Case 𝐶1 ∧𝐶2: Rule S-ConjPush is applicable.

• Case 𝐴 ∼ 𝐵: The left-hand-side of S-Eq matches. The derivation of (1) must contain a

subderivation of the form

𝛿 ′(𝐴) = 𝛿 ′(𝐵)
Δ′
;Ξ′

; Γ′;𝛿 ′ ⊢ 𝐴 ∼ 𝐵

for some Δ′,Ξ′, Γ′, 𝛿 ′.
Since we are using the same unification algorithm as in [Emrich et al. 2020], we can then use

[Emrich et al. 2020, Theorem 5] to show that unification succeeds.

• Case ⌈𝑥 : 𝐴⌉: The left-hand-side of S-Inst matches. By (1) we have 𝑥 ∈ tc(𝐹), meaning that

the rule succeeds.

• Case 𝑥 ⪯ 𝐴: Rule S-Freeze is applicable (using the same argument to show 𝑥 ∈ tc(𝐹) as in
the previous case).

• Case ∃𝑎.𝐶 ′
: Rule S-ExistsPush is applicable.

• Case ∀𝑎.𝐶 ′
: Rule S-ForallPush is applicable.

• Case def (𝑥 : 𝐴) in 𝐶 ′
: The left-hand-side of S-DefPush matches.

The derivation of (1) must contain a sub-derivation of the form

(for all 𝑎 ∈ ftv(𝐴) − (rc(𝐹),Δ′) | (rc(𝐹),Δ′); fc(𝐹);𝛿 (tc(𝐹));𝛿 ⊢ mono(𝑎)
(rc(𝐹),Δ′); fc(𝐹); (𝛿 (tc(𝐹)), 𝑥 : 𝛿𝐴);𝛿 ⊢ 𝐶 ′

(rc(𝐹),Δ′); fc(𝐹);𝛿 (tc(𝐹));𝛿 ⊢ def (𝑥 : 𝐴) in 𝐶 ′

for some 𝛿 , where 𝐶 ′ = 𝐶 ∧ 𝔘(Θ, 𝜃) and ftv(Θ) = Ξ. Note that by 𝑠 ok we have ftv(𝐴) ⊆
(rc(𝐹), fc(𝐹)).
According to Lemma 13, we have 𝛿 = 𝜃 ′ ◦ 𝜃 for some 𝜃 ′ with (rc(𝐹),Δ′) ⊢ 𝜃 ′ : Θ ⇒ ·.
Therefore, the monomorphism conditions imposed by S-DefPush are satisfied.

• Case mono(𝑎): Analogous to def case; the sub-derivation for mono(𝑎) implies that the

monomorphism conditions imposed by S-Mono are satisifed, making the rule applicable.

• Case let𝑅 𝑥 = ⊓𝑎.𝐶1 in 𝐶2: Rule S-LetPush is applicable.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:37

We now conside the case that 𝐶 is true. Due the assumption about the shape of 𝐹 [𝐶], we know
that 𝐹 is neither emtpy nor of the shape ∀Δ :: ∃𝑎 for any 𝑎.

We perform a case analysis on the topmost stack frame of 𝐹 :

• Case □ ∧𝐶2: Rule S-ConjPop is applicable.

• Case def (𝑥 : 𝐴): Rule S-DefPop is applicable.
• Case let𝑅 𝑥 = ⊓𝑎.𝐶1 in 𝐶2: Rule S-LetPolyPop or S-LetMonoPop is applicable, where the

sequence 𝑎 mentioned in the rule’s definition is empty. None of the respective rule’s side

conditions can fail.

• Case ∀𝑎: Let 𝐹 ′
be defined such that 𝐹 = 𝐹 ′

:: ∀𝑎. By assumption 𝑠 ok we have that the

variables in Θ are exactly the variables bound by ∃ or let frames in 𝐹 ′
. Suppose there exists

𝑏 ∈ ftv(Θ) such that 𝑎 ∈ ftv(𝜃 (𝑏)), which would cause the rule to fail. Then there exists a

frame 𝑓 in 𝐹 ′
that binds 𝑏. Let 𝐹𝑝 be the (possibly empty) prefix of 𝐹 ′

up to, but not including,

frame 𝑓 and let 𝐹𝑠 be the (possibly empty) suffix from there (i.e., 𝐹 ′ = 𝐹𝑝 :: 𝑓 :: 𝐹𝑠).

We distinguish two sub-cases further:

(1) If 𝑓 = ∃𝑏 then the derivation of (1) must contain a sub-derivation of the following form:

(rc(𝐹𝑝),Δ′); (fc(𝐹𝑝), 𝑏);𝛿 (tc(𝐹𝑝));𝛿 [𝑏 ↦→ 𝐴] ⊢ 𝐶 ′

(rc(𝐹𝑝),Δ′); fc(𝐹𝑝);𝛿 (tc(𝐹𝑝));𝛿 ⊢ ∃𝑏.𝐶 ′

for some 𝐴, 𝛿 , and Δ′
, where 𝐶 ′ = 𝐹𝑠 [𝐶 ∧𝔘(Θ, 𝜃)].

Note that (rc(𝐹𝑝),Δ′); (fc(𝐹𝑝), 𝑏);𝛿 (tc(𝐹𝑝));𝛿 [𝑏 ↦→ 𝐴] ⊢ 𝐶 ′
implies (rc(𝐹𝑝),Δ′) ⊢ 𝐴 ok (2).

Further, as 𝐹𝑠 contains the frame ∀𝑎, we have 𝑎 ∉ rc(𝐹𝑝),Δ′ (3).
Likewise, there existis a subderivation showing (rc(𝐹),Δ′′); fc(𝐹);𝛿 ′′(tc(𝐹));𝛿 ′′ ⊢ 𝔘(Θ, 𝜃)
for some Δ′′

and 𝛿 ′′, where Δ′′ ⊇ Δ′
and 𝛿 ′′ is an extension of 𝛿 [𝑏 ↦→ 𝐴]. By Lemma 13

we have that there exists 𝜃 ′ such that rc(𝐹),Δ′′ ⊢ 𝜃 ′ : Θ ⇒ · and 𝛿 ′′ = (𝜃 ′ ◦ 𝜃). Because 𝛿 ′′
is an extension of 𝛿 [𝑏 ↦→ 𝐴], this implies 𝐴 = 𝜃 ′(𝜃 (𝑏)).
By 𝑎 ∈ rc(𝐹) we have 𝜃 ′(𝑎) = 𝑎. Due to assumption 𝑎 ∈ ftv(𝜃 (𝑏)) we then have 𝑎 ∈ ftv(𝐴)
However, we have 𝑎 ∉ btv(𝐹𝑝),Δ′

(3) and rc(𝐹𝑝),Δ′ ⊢ 𝐴 ok (2), yielding the contradiction

𝑎 ∉ ftv(𝐴).
(2) If 𝑓 is of the the form let★ 𝑥 = ⊓𝑏.𝐶1 in 𝐶2 then the derivation of (1) must contain a

sub-derivation of the following form:

. . .

(rc(𝐹𝑝),Δ′, 𝑎); (fc(𝐹𝑝), 𝑏);𝛿 (tc(𝐹𝑝));𝛿 [𝑏 ↦→ 𝐴] ⊢ 𝐶1

(rc(𝐹𝑝),Δ′); fc(𝐹𝑝);𝛿 (tc(𝐹𝑝));𝛿 ⊢ let★ 𝑥 = ⊓𝑏.𝐶1 in 𝐶2

for some 𝐴,Δ′, 𝑎 and 𝛿 , where 𝐶1 = 𝐹𝑠 [𝐶 ∧ 𝔘(Θ, 𝜃)]. We have (rc(𝐹𝑝),Δ′, 𝑎) ⊢ 𝐴 ok and

𝑎 ∉ rc(𝐹𝑝),Δ′, 𝑎 and may therefore obtain the same contradiction as in the previous case

𝑓 = ∃𝑏.
(3) The case let• 𝑥 = ⊓𝑏.𝐶1 in 𝐶2 is analogous.

• Case ∃𝑎: If the topmost stack frames of 𝐹 have the shape let𝑅𝑥 = ⊓𝑎.□ in 𝐶 ′
:: ∃𝑏, then

S-LetPolyPop or S-LetMonoPop is applicable, as discussed before. Otherwise, due to our

assumption about the shape of 𝐹 [𝐶], there exists a frame 𝑓 in 𝐹 that isn’t an ∃ frame and we

can apply S-ExistsLower, which always succeeds.

□

B.4 Proof of Theorem 5
Lemma 20 (Well-Ordering on States). There exists a strict well-ordering < on the set St of stack
machine states such that for all 𝑠, 𝑠 ′ ∈ St with 𝑠 → 𝑠 ′ we have 𝑠 ′ < 𝑠 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:38 Emrich et al.

Proof. First, we define the size of a constraint 𝐶 , denoted |𝐶 |, s.t.

|true| = 0

|mono(𝑎) | = 1

|𝐴 ∼ 𝐵 | = 1

| ⌈𝑥 : 𝐴⌉ | = 2

|𝑥 ⪯ 𝐴| = 2

|∃𝑎.𝐶 | = 1 + |𝐶 |
|∀𝑎.𝐶 | = 1 + |𝐶 |

|def (𝑥 : 𝐴) in 𝐶 | = 1 + |𝐶 |
|𝐶1 ∧𝐶2 | = 1 + |𝐶1 | + |𝐶2 |

|let𝑅 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 | = 3 + |𝐶1 | + |𝐶2 |

Next, we define insts(𝐶) to be the number of instantiation (sub-)constraints in 𝐶 .

We now define the function | · | that maps states to elements of N0 × N0 × N0 × N0:

| (𝑓0 :: · · · :: 𝑓𝑛,Θ, 𝜃,𝐶) | = (insts(𝐶), |𝐹 [𝐶] |, |𝐶 |, max{𝑖 | 0 ≤ 𝑖 ≤ 𝑛, 𝑓𝑖 is an ∃ frame })

We observe that the lexicographic ordering <lex on tuples from N0 × N0 × N0 × N0 constitutes

a well-ordering on such tuples and we will show below that for each step 𝑠 → 𝑠 ′ we have that
|𝑠 ′ | <lex |𝑠 | holds. However, the function | · | on states is surjective, which implies that defining

𝑠 ′ < 𝑠 iff |𝑠 ′ | <lex |𝑠 | would not yield a total order on states. Hence, let <ord be some arbitrary strict

well-order on states. We then define

𝑠 ′ < 𝑠 iff |𝑠 ′ | <lex |𝑠 | or |𝑠 ′ | = |𝑠 | and 𝑠 ′ <ord 𝑠

which is indeed a well-ordering.

It remains to show that each step of the stack machine produces a smaller state w.r.t. | · |. Hence,
assume 𝑠 → 𝑠 ′, where 𝑠 = (𝐹,Θ, 𝜃,𝐶) and 𝑠 ′ = (𝐹 ′,Θ′, 𝜃 ′,𝐶 ′).

• If the step is the result of applying the rule S-Eq, S-Freeze, or S-Mono, then we have 𝐹 = 𝐹 ′

and |𝐶 ′ | < |𝐶 |, yielding |𝑠 ′ | <lex |𝑠 | via the second component of the tuples.

• If the step is the result of applying S-Inst, we have insts(𝐶 ′) = insts(𝐶) − 1 and we have

|𝑠 ′ | <lex |𝑠 | via the first component of the tuples.

• If the step is the result of applying the rule S-ConjPop, S-ForallPop, or S-DefPop, we have

insts(𝐶) = insts(𝐶 ′) and |𝐹 ′[𝐶 ′] | < |𝐹 [𝐶] |, yielding |𝑠 ′ | <lex |𝑠 | via the second component

of the tuple.

• If the step is the result of applying the rule S-ConjPush, S-ExistsPush, S-ForallPush,

S-DefPush, or S-LetPush, we have insts(𝐶) = insts(𝐶 ′) and 𝐹 [𝐶] = 𝐹 ′[𝐶 ′], but |𝐶 ′ | < |𝐶 |,
yielding |𝑠 ′ | <lex |𝑠 | via the third component of the tuples.

• If S-ExistsLower got applied, let 𝑐 and 𝑎 be defined as in the rule, 𝐹 = 𝑓0 :: . . . 𝑓𝑛 , and 𝑙 = |𝑎 |.
Note that the rule imposes 𝑙 > 0 and we have 𝐶 = 𝐶 ′ = true.
We observe that 𝑐 is a subset of 𝑎. If |𝑎 | > |𝑐 | , we have |𝐹 ′[𝐶 ′] | < |𝐹 [𝐶] | because the set of
frames of 𝐹 ′

is a strict subset of the frames in 𝐹 . We then obtain |𝑠 ′ | <lex |𝑠 | immediately via

the second component of the tuples (the first component remains unchanged). Otherwise, we

have that the two sets are equal. In that case we have |𝐹 [𝐶] | = |𝐹 ′[𝐶 ′] | (as there is merely

a reordering of stack frames happening) and |𝐶 | = |𝐶 ′ | = 0. The resulting stack 𝐹 ′
is of the

form 𝑓 ′
0
:: . . . 𝑓 ′𝑛 , where 𝑓

′
𝑛 = 𝑓𝑛−𝑙 (not an ∃ frame), and 𝑓 ′𝑛−1 is an ∃ frame.

Together, we have |𝑠 | = (insts(𝐶), |𝐹 [𝐶] |, 0, 𝑛), and |𝑠 ′ | = (insts(𝐶 ′), |𝐹 [𝐶] |, 0, 𝑛 − 1), and
insts(𝐶) = insts(𝐶 ′), yielding |𝑠 ′ | <lex |𝑠 |.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:39

• If rule S-LetPolyPop was applied, we use the following reasoning: 𝐹 is of the form 𝐹0 ::

let★ 𝑥 = ⊓𝑐.□ in𝐶 :: ∃𝑎 and 𝐶 is true. This yields

|𝐹 [𝐶] | = |𝐹0 [let★ 𝑥 = ⊓𝑐.∃𝑎.true in 𝐶] |
= |let★ 𝑥 = ⊓𝑐.true in true| + |∃𝑎.true| + |𝐶 | + |𝐹0 [true] |
= 3 + |𝑎 | + |𝐶 | + |𝐹0 [true] |,

Let 𝑎′′ be defined as in the rule. We have

|𝐹 ′[𝐶 ′] | = |𝐹0 [∃𝑎′′.def (𝑥 : 𝐴) in 𝐶] = 1 + |𝑎′′ | + |𝐶 | + |𝐹0 [true] |

Proving 𝐹 ′[𝐶 ′] < 𝐹 [𝐶] is therefore equivalent to proving

1 + |𝑎′′ | + |𝐶 | + |𝐹0 [true] | < 3 + |𝑎 | + |𝐶 | + |𝐹0 [true] |
equiv. 𝑎′′ < 2 + 𝑎.

We observe that 𝑎′′ is a strict subset of (𝑎, 𝑐) and hence |𝑎′′ | < |𝑎 | + 2, meaning that the

inequality above holds.

We have insts(𝐶) = insts(𝐶 ′), and therefore |𝑠 ′ | <lex |𝑠 | via the second component of the

tuples.

• The reasoning for rule S-LetMonoPop is analogous to the previous case. The only change is

that we need to observe that (𝑐, 𝑎′′) is a subset of (𝑎, 𝑐).
□

Theorem 5 (Termination). The constraint solver terminates on all inputs.

Proof. Follows immediately from Lemma 20, which guarantees the absence of infinite sequences

of steps. □

B.5 Proof of Theorem 6
The following lemma is a slight variation of Theorem 6; we use it in the proof of the latter.

Lemma 21. Let (∀Δ :: ∃𝑎 :: 𝐹,Θ, 𝜃,𝐶) ok. Then we have

Δ;𝑎; ·;𝛿 ⊢ 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)]
iff
there exist Θ′, 𝜃 ′′, 𝜃 ′, ˜𝑏 s.t.

(∀Δ :: ∃𝑎 :: 𝐹,Θ, 𝜃,𝐶) →∗ (∀Δ :: ∃ (𝑎, ˜𝑏),Θ′, 𝜃 ′, true) and
Δ ⊢ 𝜃 ′′ : Θ′ ⇒ · and
(𝜃 ′′ ◦ 𝜃 ′)↾�̃� = 𝛿

Proof. We show each direction individually:

=⇒ By transfinite induction on the well-ordering < on stack machine states 𝑠 whose existence is

shown in Lemma 20. Hence, we assume that the left-to-right direction of the lemma holds

for all 𝑠 ′ on the left of the →∗
s.t. 𝑠 ′ < 𝑠 and show that the left-to-right direction holds for 𝑠

on the left of→∗
, too.

To this end, let 𝑠 = (∀Δ :: ∃𝑎 :: 𝐹,Θ, 𝜃, 𝐹 ,𝐶) and we assume 𝑠 ok (1) and Δ;𝑎; ·;𝛿 ⊢ 𝐹 [𝐶 ∧
𝔘(Θ, 𝜃)] (2).
We first consider the case that 𝑠 is already a final state in the senses of this lemma, meaning

that 𝐹 is of the shape ∃ ˜𝑏 for some
˜𝑏 and𝐶 is true. Further, we have 𝜃 = 𝜃 ′ and Θ = Θ′

, where

ftv(Θ) = 𝑎, ˜𝑏.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:40 Emrich et al.

This makes (2) equivalent to Δ;𝑎; ·;𝛿 ⊢ ∃ ˜𝑏.𝔘(Θ, 𝜃). Applying Lemma 13 then gives us the

existence of an appropriate 𝜃 ′′.

We now consider the case where 𝑠 is not a final state, i.e., we don’t have 𝐹 [𝐶] = ∃ ˜𝑏.true for
any

˜𝑏. We observe that (2) implies ; ·; ·; ∅ ⊢ ∀Δ :: ∃𝑎 :: 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)]. This allows us to apply
Theorem 4, showing that the machine can take a step from 𝑠 to a new state 𝑠1. We now show

that 𝑠1 is of the form (∀Δ :: ∃𝑎 :: 𝐹1,Θ1, 𝜃1,𝐶1) for some 𝐹1,Θ1, 𝜃1, and 𝐶1:

If 𝐹 is empty, then𝐶 must not be true. All stack machine rules applicable in this case preserve

all existing stack frames. Otherwise, if 𝐹 is not empty, we observe that the only rules of

the stack machine that may replace more than the topmost stack frame are S-ExistsLower,

S-LetMonoPop, and S-LetPolyPop.

If S-ExistsLower was applied, we observe that the only way for the variables 𝑎 in the

definition of the rule S-ExistsLower not to be disjoint from the variables 𝑎 in the statement

of this lemma is if the stack of 𝑠 is of the form ∀Δ :: ∃𝑎 :: ∃ ˜𝑏 for some
˜𝑏, which violates the

assumption about the shape of 𝐹 [𝐶] above. Therefore, if S-ExistsLower was applied, the

bottom-most frames ∀Δ :: ∃𝑎 of 𝑠 remained unchanged. If S-LetPolyPop or S-LetMonoPop

was applied, then 𝐹 must contain a let frame and any stack frames below that in 𝑠 (in particular,

the frames ∀Δ :: ∃𝑎) remain unchanged.

Therefore, the ∀Δ :: ∃𝑎 frames at the bottom of 𝑠’s stack are preserved by any rule possibly

turning 𝑠 into 𝑠1. Using (1) and the fact that the lower stack frames of 𝑠1 are ∀Δ :: ∃𝑎, we may

apply Theorem 3 to the step 𝑠 → 𝑠1, which gives us

(3) Δ;𝑎; ·;𝛿 ⊢ 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)] iff Δ;𝑎; ·;𝛿 ⊢ 𝐹1 [𝐶1 ∧𝔘(Θ1, 𝜃1)]
By Lemma 20, we further have 𝑠1 < 𝑠 (4) and by Lemma 16 𝑠1 ok (5).
Combining (2) with (3) gives us Δ;𝑎; ·;𝛿 ⊢ 𝐹1 [𝐶1 ∧𝔘(Θ1, 𝜃1)]. This, together with (5) and (4)

allows us to apply the induction hypothesis to 𝑠1. This gives us the existence of Θ
′, 𝜃 ′′, 𝜃 ′, 𝑎

s.t.

(6) (∀Δ :: ∃𝑎 :: 𝐹1,Θ1, 𝜃1,𝐶1) →∗ (∀Δ :: ∃ (𝑎, ˜𝑏),Θ′, 𝜃 ′, true)
(7) Δ ⊢ 𝜃 ′′ : Θ′ ⇒ ·
(8) (𝜃 ′′ ◦ 𝜃 ′)↾�̃� = 𝛿 .

The step 𝑠 → 𝑠1 extends (6) to (∀Δ :: ∃𝑎 :: 𝐹,Θ, 𝜃,𝐶) →∗ (∀Δ :: ∃ (𝑎, ˜𝑏),Θ′, 𝜃 ′, true) and (7)

as well as (8) show us that 𝜃 ′′ has the desired properties.

⇐= Let 𝑠 be the state (∀Δ :: ∃𝑎 :: 𝐹,Θ, 𝜃,𝐶). We prove this direction by induction on the

length 𝑛 of the sequence 𝑠 →𝑛 (∀Δ :: ∃ (𝑎, ˜𝑏),Θ′, 𝜃 ′, true). By assumption, we also have

Δ ⊢ 𝜃 ′′ : Θ′ ⇒ · (9) and (𝜃 ′′ ◦ 𝜃 ′)↾�̃� = 𝛿 (10).
If 𝑛 = 0 we have Θ = Θ′

, 𝜃 = 𝜃 ′, 𝐶 = true, and 𝐹 = ∃ ˜𝑏. The property to prove simplifies to

Δ;𝑎; ·;𝛿 ⊢ ∃ ˜𝑏.𝔘(Θ, 𝜃). This follows directly from applying Lemma 13 to (9) and (10).

In the inductive step there exists some 𝑠1 s.t.

𝑠 → 𝑠1 →∗ (∀Δ :: ∃(𝑎, ˜𝑏),Θ′, 𝜃 ′, true)

We now assume that 𝐹 [𝐶] is not of the form ∃𝑐.true for any 𝑐 (otherwise, 𝑠 would already be

a final state in the sense of this lemma and we finish the proof directly using the 𝑛 = 0 case

above).

Therefore, using the same reasoning as in the =⇒ direction, we know that 𝑠1 is of the form

(∀Δ :: ∃𝑎 :: 𝐹1,Θ1, 𝜃1,𝐶1) for some 𝐹1,Θ1, 𝜃1, and 𝐶1. According to Lemma 16, we have 𝑠1 ok.
We can therefore apply Theorem 3 to this single step, yielding

(11) Δ;𝑎; ·;𝛿 ⊢ 𝐹 [𝐶 ∧𝔘(Θ, 𝜃)] iff Δ;𝑎; ·;𝛿 ⊢ 𝐹1 [𝐶1 ∧𝔘(Θ1, 𝜃1)]

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:41

We apply the induction hypothesis to the sequence 𝑠1 →∗ (∀Δ :: ∃(𝑎, ˜𝑏),Θ′, 𝜃 ′, true), yielding
Δ;𝑎; ·;𝛿 ⊢ 𝐹1 [𝐶1 ∧ 𝔘(Θ1, 𝜃1)] By (11), this gives us the desired property Δ;𝑎; ·;𝛿 ⊢ 𝐹 [𝐶 ∧
𝔘(Θ, 𝜃)].

□

Theorem 6 (Correctness of constraint solver). Let Δ ⊢ Γ ok and Δ;Ξ; Γ ⊢ 𝐶 ok. Then we
have

Δ;Ξ; Γ;𝛿 ⊢ 𝐶
iff
there exist Θ, 𝜃 ′, 𝜃,Ξ′ s.t.

(·, ·, ∅,∀Δ. ∃Ξ. def Γ in 𝐶) →∗ (∀Δ :: ∃ (Ξ,Ξ′),Θ, 𝜃, true) and
Δ ⊢ 𝜃 ′ : Θ ⇒ · and
(𝜃 ′ ◦ 𝜃)↾Ξ = 𝛿.

Proof. Let 𝑎 be an arbitrary ordering of the variables in Ξ. Further, let 𝜃a := [𝑎 ↦→ 𝑎] and
Θa := (𝑎 : ★). We have

(·, ·, ∅,∀Δ.∃𝑎.def Γ in 𝐶) →∗ (∀Δ :: ∃𝑎,Θa, 𝜃a, def Γ in 𝐶)

after |Δ| applications of the rule S-ForallPush and |𝑎 | applications of S-ExistsPush. Let the former

state be defined as 𝑠 , the latter one as 𝑠 ′. Here, due to Δ;Θ; Γ ⊢ 𝐶 ok, we have 𝑠 ′ ok.
Therefore, for all Θ̂, ˆ𝜃, ˜𝑏 we have

𝑠 ′ →∗ (∀Δ :: ∃ (𝑎, ˜𝑏), Θ̂, ˆ𝜃, true)
iff

𝑠 →∗ (∀Δ :: ∃ (𝑎, ˜𝑏), Θ̂, ˆ𝜃, true)

Now, let 𝐹 be the empty stack. We then have

Δ;Ξ; Γ;𝛿 ⊢ 𝐶
iff Δ;Ξ; ·;𝛿 ⊢ (def Γ in 𝐶) (by Δ ⊢ Γ: all mono. conditions satisfied)

iff Δ;Ξ ; ·;𝛿 ⊢ (def Γ in 𝐶) ∧𝔘(Θa, 𝜃a) (𝔘(Θa, 𝜃a) is equivalent to true)
iff Δ;Ξ ; ·;𝛿 ⊢ 𝐹 [(def Γ in 𝐶) ∧𝔘(Θa, 𝜃a)] (𝐹 is empty)

Using this, the equivalence to prove then follows directly from Lemma 21. □

B.6 Proof of Theorem 7
Theorem 7 (Constraint-based typechecking is sound). Let Δ ⊢ Γ and Δ; Γ ⊢ 𝑀 ok and

𝑎 #Δ. If (·, ·, ∅,∀Δ. ∃𝑎. def Γ in J𝑀 : 𝑎K) →∗ (∀Δ :: ∃ (𝑎, ˜𝑏),Θ, 𝜃, true) and Δ ⊢ 𝜃 ′ : Θ ⇒ · then
Δ; Γ ⊢ 𝑀 : (𝜃 ′ ◦ 𝜃) (𝑎).

Proof. Suppose (·, ·, ∅,∀Δ.∃𝑎.def Γ in J𝑀 : 𝑎K) →∗ (∀Δ :: ∃ (𝑎, ˜𝑏),Θ, 𝜃, true) and Δ ⊢ 𝜃 ′ : Θ ⇒
·. Let 𝑠 refer to the first state of the sequence above and 𝑠 ′ to its last state.

We apply Lemma 11, which gives us Δ;𝑎; Γ ⊢ J𝑀 : 𝑎K ok. We therefore have ⊢ 𝑠 ok. By Lemma 16

we then have ⊢ 𝑠 ′ ok, too, which implies Δ ⊢ Θ ⇒ · and ftv(Θ) = ˜𝑏, 𝑎.

We can therefore define 𝛿 as 𝜃 ′ ◦ 𝜃↾{𝑎} . This allows us to apply Theorem 6. We instantiate the

right-to-left direction of the theorem such that we need to show that the following properties hold:

(1) (·, ·, ∅,∀Δ. ∃𝑎. def Γ in𝐶) →∗ (∀Δ :: ∃ (𝑎, ˜𝑏),Θ, 𝜃, true)
(2) Δ ⊢ 𝜃 ′ : Θ ⇒ ·
(3) (𝜃 ′ ◦ 𝜃)↾𝑎 = 𝛿

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:42 Emrich et al.

The first two properties follow immediately by assumption, the third one holds by definition of

𝛿 . Therefore, the right-to-left direction of Theorem 6 gives us Δ;𝑎; Γ;𝛿 ⊢ J𝑀 : 𝑎K. Theorem 2 then

immediately yields Δ; Γ ⊢ 𝑀 : 𝛿 (𝑎). By definition of 𝛿 this is equivalent to the property to show.

□

B.7 Proof of Theorem 8
Theorem 8 (Constraint-based typechecking is complete and most general). Let 𝑎 #Δ.

If Δ; Γ ⊢ 𝑀 : 𝐴 then there exist Ξ,Θ, 𝜃 , 𝛿 such that (·, ·, ∅,∀Δ .∃𝑎 .def Γ in J𝑀 : 𝑎K) →∗ (∀Δ ::

∃ Ξ,Θ, 𝜃, true) and 𝐴 = 𝛿 (𝜃 (𝑎)).

Proof. We assume Δ; Γ ⊢ 𝑀 : 𝐴, which implies Δ ⊢ Γ and Δ; Γ ⊢ 𝑀 ok. This means that

Theorem 1 gives us Δ;𝑎; Γ; [𝑎 ↦→ 𝐴] ⊢ J𝑀 : 𝑎K.
We apply the left-to-right direction of Theorem 6 (using J𝑀 : 𝑎K for 𝐶 and [𝑎 ↦→ 𝐴] for 𝛿 in the

theorem’s statement) which gives us the existence of Θ, 𝜃, 𝜃 ′, 𝑐 s.t.

(1) (·, ·, ∅,∀Δ.∃𝑎.def Γ in J𝑀 : 𝑎K) →∗ (∀Δ :: ∃(𝑎, 𝑐),Θ, 𝜃, true)
(2) Δ ⊢ 𝜃 ′ : Θ ⇒ ·
(3) (𝜃 ′ ◦ 𝜃)↾{𝑎} = [𝑎 ↦→ 𝐴]
Clearly, we have (𝜃 ′ ◦ 𝜃↾{𝑎}) (𝑎) = (𝜃 ′ ◦ 𝜃) (𝑎) = [𝑎 ↦→ 𝐴] (𝑎) = 𝐴, which is the second property

we need to show. By choosing Ξ = (𝑎, 𝑐), property (1) becomes the first property that we needed to

show.

□

C FURTHER DISCUSSION OF LET AND DEF CONSTRAINTS
As mentioned in the paper, our treatment of let and def constraints differs from Pottier and Rémy

[2005] in some ways, and in particular, lacks the nice property that let constraints can be defined

in terms of def constraints, which can in turn be eliminated by a form of inlining. We have

investigated alternative designs, and not found one that has these properties and works otherwise.

In this appendix we outline the results of this exploration of the design space. We use without

further explanation notation from Pottier and Rémy [2005].

C.1 Def constraints
In [Pottier and Rémy 2005], qualified types 𝜎 are of the form ∀𝑋 [𝐶] .𝑇 , where 𝑇 does not contain

further quantifiers or constraints.

Due to the existence of constraints in types in their system, the only difference between Let

constraints (using their syntax: of the form let 𝑥 : ∀𝑋 [𝐶1] .𝑇 in 𝐶2) and Def constraints (of the

form def 𝑥 : ∀𝑋 [𝐶1] .𝑇 in 𝐶2) is that the former imposes satisfaction of the constraint 𝐶1. This is

expressed by the following equivalence in [Pottier and Rémy 2005]: we have that

let 𝑥 : ∀𝑋 [𝐶1] .𝑇 in 𝐶2

is equivalent to

∃𝑋 .𝐶1 ∧ def 𝑥 : ∀𝑋 [𝐶1] .𝑇 in 𝐶2.

C.1.1 Substituting def away in HM(X). As stated in [Pottier and Rémy 2005], their def constraints

can be substituted away. Concretely, in their work, the constraint def (𝑥 : ∀𝑋 [𝐶1] .𝑇) in 𝐶2 is

equivalent to 𝐶 ′
, where 𝐶 ′

results from 𝐶2 by replacing all 𝑥 ⪯ 𝑇 ′
with ∃𝑋 .𝐶1 ∧𝑇 ≤ 𝑇 ′

. Here, ≤ is

their subtyping relation, and we may just use ∼ for the purposes of this discussion.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:43

C.1.2 Can we substitute def away? We initially did not think this could be possible, however, this

is not entirely clear. In our system, consider the constraint def (𝑥 : ∀𝑎.𝐻) in 𝐶2.

Straightforwardly adapting the equivalence from [Pottier and Rémy 2005]would yield a constraint

𝐶 ′
that results from 𝐶2 by replacing all 𝑥 ⪯ 𝐴 with ∃𝑎.𝐻 ∼ 𝐴 and all ⌈𝑥 : 𝐴⌉ with ∀𝑎.𝐻 ∼ 𝐴.

In our system, we then have that def (𝑥 : ∀𝑎.𝐻) in 𝐶2 entails 𝐶
′
, but not the other direction.

To understand why, consider def (𝑥 : 𝑎) in 𝑥 ⪯ ∀𝑏.(𝑏 → 𝑏), where 𝑎 is some flexible variable. Its

substituted version 𝐶 ′
is simply 𝑎 ∼ ∀𝑏.(𝑏 → 𝑏), which is clearly satisfiable, whereas the original

constraint is not, as we need to pick the polymorphic type ∀𝑏.𝑏 → 𝑏 for 𝑎, which def constraints

prohibit (due to the monomorphism premise in Sem-Def Figure 4).

C.1.3 What about redefining def? One may now reasonably ask “is there a different notion of def

constraints for which the reverse direction of the entailment holds” (which would mean that a

def constraint is indeed equivalent to the substituted version)? After all, it’s the monomorphism

restriction that is preventing the reverse direction from holding.

One option we have considered is to try defining the semantics of def constraints in terms of

the substitution rule directly. Concretely, consider the following, alternative version of the rule

Sem-Def from Figure 3:

Sem-Def-Alt

Δ;Ξ; Γ;𝛿 ⊢ 𝐶 [𝑥 ⪯ 𝐴 { ∃𝑎.𝐻 ∼ 𝐴] [⌈𝑥 : 𝐴⌉ { ∀𝑎.𝐻 ∼ 𝐴]
Δ;Ξ; Γ;𝛿 ⊢ def (𝑥 : ∀𝑎.𝐻) in 𝐶

We use { here to indicate that all subconstraints of 𝐶 of the forms 𝑥 ⪯ 𝐴 and ⌈𝑥 : 𝐴⌉ are
replaced.

We conjecture that this yields a constraint language that still has most general solutions and

we could adapt the solver to behave accordingly. The reason is that we still only instantiate those
variables 𝑎 that were explicitly given in the def constraint. If the remaining type 𝐻 contains flexible

variables 𝑎 that are instantiated with polymorphic types (which this version of def constraints

would allow), those quantifiers could never be instantiated. This is observable in the earlier example

def (𝑥 : 𝑎) in 𝑥 ⪯ ∀𝑏.(𝑏 → 𝑏), which would now be defined to hold if 𝑎 ∼ ∀𝑏.(𝑏 → 𝑏) holds, and
therefore permits the solution 𝑎 ↦→ (∀𝑏.𝑏 → 𝑏) without being able to instantiate 𝑏.

However, there are several issues with this, which is why we have not adopted this idea in the

paper.

(1) It appears rather un-intuitive that with this updated semantics, the only solution for the

constraint def (𝑥 : 𝑎) in 𝑥 ⪯ ∀𝑏.(𝑏 → 𝑏) is the one where we pick 𝑎 ↦→ (∀𝑏.𝑏 → 𝑏). When

just seeing the constraint, we would expect 𝑎 ↦→ (∀𝑏.𝑏) to work, too.

(2) Similarly, consider the following two constraints:

𝐶1 := def (𝑥 : ∀𝑎.𝑎 → 𝑎) in 𝑥 ⪯ 𝑐

𝐶2 := ∃𝑏.𝑏 ∼ (∀𝑎.𝑎 → 𝑎) ∧ def (𝑥 : 𝑏) in 𝑥 ⪯ 𝑐

If we use the new version of let constraints (i.e., Sem-Def-Alt), we then have that the

solution for 𝐶1 requires 𝑐 ↦→ 𝑑 → 𝑑 for any type 𝑑 , whereas the solution for 𝐶2 requires

𝑐 ↦→ (∀𝑎.𝑎 → 𝑎). This seems very un-intuitive.

Using our original semantics for def constraints (i.e., Sem-Def from Figure 3), we get the

same solution for 𝐶1 and 𝐶2 is unsatisfiable.

(3) The rule Sem-Def-Alt would make def constraints more permissive than unannotated 𝜆

terms in FreezeML. If we used Sem-Def-Alt, we would be able to conclude that the term

𝜆𝑥 .𝜆(𝑓 : (∀𝑏.𝑏) → Int).𝑓 ⌈𝑥⌉ is well-typed, because the constraint generated from it would

now be satisfiable. However, this term is not accepted by the FreezeML typing rules.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

111:44 Emrich et al.

On the other hand, this problem could be mitigated by generating appropriate mono con-

straints: We would change Figure 5 such that

J𝜆𝑥.𝑀 : 𝐴K = ∃𝑎1, 𝑎2.(𝑎1 → 𝑎2 ∼ 𝐴 ∧ def (𝑥 : 𝑎1) in J𝑀 : 𝑎2K ∧mono(𝑎1))

Instead of following the approach in C.1.3, one may think that we should make instantiation

constraints 𝐴 ⪯ 𝐵 part of the constraint language (rather than being syntactic sugar for something

else, as in [Pottier and Rémy 2005]). Given a constraint def (𝑥 : 𝐴) in 𝐶2, we could then substitute

all 𝑥 ⪯ 𝐵 in 𝐶2 with 𝐴 ⪯ 𝐵 (and substitute all ⌈𝑥 : 𝐵⌉ as in C.1.2, meaning with 𝐴 ∼ 𝐵).

The problem with these constraints is that we need to ensure that the polymorphism on the

left-hand-side is already known: Without any restrictions, the constraint 𝑎 ⪯ Int → Int would
have no most general solution, as both 𝑎 ↦→ (∀𝑏.𝑏 → 𝑏) and 𝑎 ↦→ Int → Int are feasible.
However, term variables are the very mechanism we use in our constraint language to ensure

that the polymorphism on the left-hand-side of an instantiation constraint is fully determined!

Therefore, using such constraints would not simplify the treatment of instantiation.

C.2 Let constraints
Just using the semantics of let constraints, we can observe the following properties

(1) If Δ;Ξ; Γ;𝛿 ⊢ let• 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 holds, then for all Δm, 𝛿m such that mostgen(Δ, (Ξ, 𝑎), Γ,
𝐶1,Δm, 𝛿m) we have Δ;Ξ; Γ;𝛿 ⊢ ∃Δm .def (𝑥 : 𝛿m (𝑎)) in 𝐶2.

(2) If Δ;Ξ; Γ;𝛿 ⊢ let• 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 holds, then for all Δm, 𝛿m,Δo, 𝑏 such that

mostgen(Δ, (Ξ, 𝑎), Γ,𝐶1,Δm, 𝛿m)
Δo = ftv(𝛿m (Ξ)) − Δ

𝑏 = ftv(𝛿m (𝑎)) − Δ,Δo

we have Δ;Ξ; Γ;𝛿 ⊢ ∃Δo .def (𝑥 : ∀𝑏.𝛿m (𝑎)) in 𝐶2.

Note that most general types are only unique up to the names of the freshly introduced variables,

which is why we need to universally quantify over 𝛿m and Δm here. The extra conditions in (2)

defining Δo and 𝑏 are identical to those in Sem-Let-Poly.

The properties stated in (1) and (2) are not equivalences between let and def constraints, but only

entailments.

It would probably be possible to state some form of equivalence, but that doesn’t seem helpful:

Because we don’t have constraints in types, a constraint def (𝑥 : 𝐴) in 𝐶2 with an arbitrary type

𝐴 entails any constraint let𝑅 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 where 𝐶1 (a constraint pulled out of thin air) has a

most general solution that is somehow related to 𝐴.

Given the entailments stated in in (1) and (2), we could apply the substitution of def constraints

discussed in point C.1.2 in the previous section C.1 to relate def constraints to constraints without

def constraints. Recall that these are also just entailments, not equivalences.

So far in this section, we have related constraints let 𝑥 = ⊓𝑎.𝐶1 in 𝐶2 to other constraints that

effectively require us to solve 𝐶1 first (because we refer to mostgen(. . . ,𝐶1, . . .) in the expansion).

Would it be possible to relate let constraints to other constraints without solving 𝐶1 first? In

[Garrigue and Rémy 1999] this is possible, by using constraints in types.

First, we observe that due to the impredicative nature of our system, we cannot deal with

instantiation constraints as in [Garrigue and Rémy 1999] (which we discussed Section C.1.1).

Concretely, given a constraint let𝑅 𝑥 = ⊓𝑎.𝐶1 in 𝐶2, we cannot simply replace all 𝑥 ⪯ 𝐴 occuring

in 𝐶2 with ∃𝑎.𝐶1 ∧ 𝑎 ∼ 𝐴. While this may work for examples where generalisation occurs, like

let★ 𝑥 = ⊓𝑎.∃𝑏.𝑎 ∼ 𝑏 → 𝑏 in 𝑥 ⪯ Int → Int, it doesn’t work in cases such as let𝑅 𝑥 = ⊓𝑎.𝑎 ∼

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

Constraint-based type inference for FreezeML 111:45

(∀𝑏.𝑏 → 𝑏) in 𝑥 ⪯ Int → Int (irrespective of the choice of 𝑅), because the scheme above would

yield ∃𝑎.𝑎 ∼ (∀𝑏.𝑏 → 𝑏) ∧ 𝑎 ∼ (Int → Int), which is unsatisfiable.

When considering let★ constraints, we observe that we would need some form of explicit

generalisation constraints to substitute away freeze constraints under a generalising let constraint.

Consider the example let★ 𝑥 = ⊓𝑎.∃𝑏.𝑎 ∼ 𝑏 → 𝑏 in ⌈𝑥 : ∀𝑏.𝑏 → 𝑏⌉. Here, we cannot substitute
away ⌈𝑥 : ∀𝑏.𝑏 → 𝑏⌉ with ∃𝑎.∃𝑏.𝑎 ∼ 𝑏 → 𝑏 ∧ 𝑎 ∼ ∀𝑏.𝑏 → 𝑏 (as discussed for handling freeze

constraints under def in C.1.2).

Instead, we would need some kind of generalisation constraint ⊓𝑎.𝐶 : 𝐴 that generalises the

type for 𝑎 in 𝐶 and asserts that the generalised solution for 𝑎 is equal to 𝐴. However, we would

have to generalise not any type but the most general type: Otherwise, ⊓𝑎.∃𝑏.𝑎 ∼ 𝑏 → 𝑏 : 𝑐 would

have the two solutions 𝑐 ↦→ (Int → Int) and 𝑐 ↦→ ∀𝑏.𝑏 → 𝑏, depending on what type we chose for

𝑏 prior to generalising. This is the same reason why let terms and constraints have principality

conditions in our system.

Therefore, we would need to push the mostgen logic from let constraints into the semantics of

such generalisation constraints, too.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 111. Publication date: August 2022.

	Abstract
	1 Introduction
	2 FreezeML
	3 Constraint language
	3.1 Constraint generation
	3.2 Def constraints
	3.3 Let constraints
	3.4 Metatheory

	4 Constraint solving
	4.1 Stack Machine Rules
	4.2 Metatheory

	5 Discussion
	5.1 Using Ranks
	5.2 Unordered FreezeML
	5.3 Comparison with HM(X) solver by PottierR05

	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Proofs for Section 3.4
	A.1 Auxiliary Lemmas
	A.2 Proof of theorem:constraint-generation-soundness
	A.3 Proof of theorem:constraint-generation-completeness

	B Proofs for Section 4.2
	B.1 Auxiliary Lemmas
	B.2 Proof of theorem:preservation
	B.3 Proof of theorem:progress
	B.4 Proof of theorem:termination
	B.5 Proof of theorem:solver-correct
	B.6 Proof of theorem:constraint-based-type-inference-sound
	B.7 Proof of theorem:constraint-based-type-inference-complete

	C Further discussion of Let and Def constraints
	C.1 Def constraints
	C.2 Let constraints

