Haskell Symposium 2015 Vancouver, Canada

Injective Type Families for Haskell

Jan Stolarek Politechnika Łódzka Simon Peyton Jones Microsoft Research Cambridge Richard A. Eisenberg University of Pennsylvania

```
type family Id a
type instance Id Int = Int
type instance Id Bool = Bool
```

```
id :: Id t -> Id t
id x = x
```

```
foo = id True
```

Couldn't match expected type 'Id t' with actual type 'Bool' The type variable 't' is ambiguous

```
type family Id a
type instance Id Int = Int
type instance Id Bool = Bool
id :: Id t -> Id t
id x = x
foo = id True
```

Problem: not possible to infer at call site what type variable t should be

Our solution: injective type families

```
Couldn't match type 'Id t' with 'Id t0'
NB: 'Id' is a type function, and may not be injective
The type variable 't0' is ambiguous
Expected type: Id t -> Id t
Actual type: Id t0 -> Id t0
```

Backwards-compatible extension to type families, which allows users to annotate type families with injectivity information.

Algorithm for checking validity of user's injectivity annotation (+ proofs).

Type inference using injectivity information.

Comparison of injective type families with functional dependencies.

Definition (Injectivity)

A type family F is *n*-injective (i.e. injective in its *n*'th argument) iff $\forall \overline{\sigma}, \overline{\tau}: F \overline{\sigma} \sim F \overline{\tau} \implies \sigma_n \sim \tau_n$

Intuition

If F is n-injective then result of type family reduction F $\overline{\tau}$ uniquely determines the arguments τ_n

Annotating type families with injectivity information

```
type family F a b c = r | r -> a c
type instance F Int Bool Char = Int
type instance F Int Double Char = Int
type instance F Char Int Double = Char
```

Annotating type families with injectivity information

```
type family F a b c = r | r \rightarrow a c
type instance F Int Bool Char = Int
type instance F Int Double Char = Int
type instance F Char Int Double = Char
type instance F Char Char Char = Int
```

Type family equations violate injectivity annotation: F Int Bool Char = Int F Char Char Char = Int

```
type family F1 a = r | r \rightarrow a
type instance F1 [a] = a
```

F1 is not injective:

F1 [F1 Int]

```
type family F1 a = r | r \rightarrow a
type instance F1 [a] = a
```

F1 is not injective:

```
F1 [F1 Int] ~ F1 Int
```

```
type family F1 a = r | r \rightarrow a
type instance F1 [a] = a
```

F1 is not injective:

[F1 Int] ~ Int

Do not allow bare type variable to appear as the RHS.

```
type family F2 a = r | r \rightarrow a
type instance F2 a = a
```

F2 is injective.

Allow bare type variable as RHS if all LHS patterns are bare variables.

```
type family F3 a = r | r \rightarrow a
type instance F3 [a] = F3 a
```

F3 is not injective:

F3 [Int]

```
type family F3 a = r | r \rightarrow a
type instance F3 [a] = F3 a
```

F3 is not injective:

F3 [Int] ~ F3 Int

```
type family F3 a = r | r \rightarrow a
type instance F3 [a] = F3 a
```

F3 is not injective:

[Int] ~ Int

```
type family F3 a = r | r \rightarrow a
type instance F3 [a] = F3 a
```

F3 is not injective:

[Int] ~ Int

Disallow calls to type families?

```
type family F4 a = r | r \rightarrow a
type instance F4 [a] = [G a]
type instance F4 (Maybe a) = H a \rightarrow Int
```

F4 is injective if G and H are injective.

Do not allow calls to type families at the top level of RHS.

```
type family F5 a = r | r \rightarrow a
type instance F5 [a] = [G a]
type instance F5 (Maybe a) = [H a]
```

F5 is not injective.

Assume that a type family application unifies with any type.

Definition (Injectivity check)

A type family F is *n*-injective iff:

1 For every equation $F \ \overline{\sigma} = \tau$:

 $\triangleright \ \tau$ is not a type family application, and

• if $\tau = \alpha_i$ (for some type variable α_i), then $\overline{\sigma} = \overline{\alpha}$.

2 Every pair of equations $F \overline{\sigma}_i = \tau_i$ and $F \overline{\sigma}_j = \tau_j$ (including i = j) is *pairwise-n-injective*.

Definition (Pairwise-*n*-injectivity)

A pair of equations $F \ \overline{\sigma}_i = \tau_i$ and $F \ \overline{\sigma}_j = \tau_j$ is pairwise-*n*-injective iff either:

• τ_i and τ_j do not *unify*

2 τ_i and τ_j unify with substitution θ and $\theta(\overline{\sigma}_{in}) = \theta(\overline{\sigma}_{jn})$

Pre-unification algorithm

We use a special variant of the unification algorithm that:

- treats type family application as possibly unifying with any other type
- Iooks under injective type family applications
- Odes not find solutions involving infinite types

```
type family Id a = r | r -> a
type instance Id Int = Int
type instance Id Bool = Bool
```

```
id :: Id t -> Id t
id x = x
```

foo = id True

type family Id a = r | r -> a
type instance Id Int = Int
type instance Id Bool = Bool

foo = id True

There is a close similarity between injective type families and type classes with functional dependencies.

Our implementation of injective type families is not yet as expressive as functional dependencies.

data Nat = Zero | Succ a

class Add a b r | a b \rightarrow r, r a \rightarrow b instance Add Zero b b instance (Add a b r) => Add (Succ a) b (Succ r) data Nat = Zero | Succ a

type family AddTF a b = $r | r a \rightarrow b$ where AddTF Zero b = b AddTF (Succ a) b = Succ (AddTF a b)

- More in the paper:
 - real-life examples
 - detailed description of type inference using injectivity
 - soundness and completeness, with proofs
 - kind injectivity
- Current work:
 - extending Core
 - generalized injectivity
 - full proof of soundness

Haskell Symposium 2015 Vancouver, Canada

Injective Type Families for Haskell

Jan Stolarek Politechnika Łódzka Simon Peyton Jones Microsoft Research Cambridge Richard A. Eisenberg University of Pennsylvania Table: Popularity of selected type-level programming language extensions.

Language extension	no. of using packages
TypeFamilies	1092
GADTs	612
FunctionalDependencies	563
DataKinds	247
PolyKinds	109

$$U(\alpha, \tau) \theta = U(\theta(\alpha), \tau) \theta \qquad \alpha \in dom(\theta) \quad (1)$$

$$U(\alpha, \tau) \theta = \operatorname{Just} \theta \qquad \alpha \in ftv(\theta(\tau)) \quad (2)$$

$$U(\alpha, \tau) \theta = \operatorname{Just} ([\alpha \mapsto \theta(\tau)] \circ \theta) \quad \alpha \notin ftv(\theta(\tau)) \quad (3)$$

$$U(\tau, \alpha) \theta = U(\alpha, \tau) \theta \qquad (4)$$

$$U(\sigma_1 \sigma_2, \tau_1 \tau_2) \theta = U(\sigma_1, \tau_1) \theta \gg U(\sigma_2, \tau_2) \qquad (5)$$

$$U(H, H) \theta = \operatorname{Just} \theta \qquad (6)$$

$$U(F(\overline{\sigma}), F(\overline{\tau})) \theta = U(\sigma_i, \tau_i) \theta \gg F \text{ is } i\text{-injective} \qquad (7)$$

$$\dots \gg \dots \text{...etc...}$$

$$U(\sigma_j, \tau_j) \qquad F \text{ is } j\text{-injective} \qquad (8)$$

$$U(\tau, F(\overline{\sigma}), \theta) = \operatorname{Just} \theta \qquad (9)$$

$$U(\sigma, \tau) \theta = \operatorname{Nothing} \qquad (10)$$