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type family Id a

type instance Id Int = Int

type instance Id Bool = Bool

id :: Id t -> Id t

id x = x

foo = id True

Couldn’t match expected type ‘Id t’

with actual type ‘Bool’

The type variable ‘t’ is ambiguous



type family Id a

type instance Id Int = Int

type instance Id Bool = Bool

id :: Id t -> Id t

id x = x

foo = id True

Problem: not possible to infer at call site what type variable t should be

Our solution: injective type families



Couldn’t match type ‘Id t’ with ‘Id t0’

NB: ‘Id’ is a type function, and may not be injective

The type variable ‘t0’ is ambiguous

Expected type: Id t -> Id t

Actual type: Id t0 -> Id t0



Our contributions

Backwards-compatible extension to type families, which allows users to an-
notate type families with injectivity information.

Algorithm for checking validity of user’s injectivity annotation (+ proofs).

Type inference using injectivity information.

Comparison of injective type families with functional dependencies.



What is injectivity?

Definition (Injectivity)

A type family F is n-injective (i.e. injective in its n’th argument)
iff ∀σ, τ : F σ ∼ F τ =⇒ σn ∼ τn

Intuition

If F is n-injective then result of type family reduction F τ uniquely
determines the arguments τn



Annotating type families with injectivity information

type family F a b c = r | r -> a c

type instance F Int Bool Char = Int

type instance F Int Double Char = Int

type instance F Char Int Double = Char



Annotating type families with injectivity information

type family F a b c = r | r -> a c

type instance F Int Bool Char = Int

type instance F Int Double Char = Int

type instance F Char Int Double = Char

type instance F Char Char Char = Int

Type family equations violate injectivity annotation:

F Int Bool Char = Int

F Char Char Char = Int



Verifying injectivity annotation: design challenges

type family F1 a = r | r -> a

type instance F1 [a] = a

F1 is not injective:
F1 [F1 Int]



Verifying injectivity annotation: design challenges

type family F1 a = r | r -> a

type instance F1 [a] = a

F1 is not injective:
F1 [F1 Int] ~ F1 Int



Verifying injectivity annotation: design challenges

type family F1 a = r | r -> a

type instance F1 [a] = a

F1 is not injective:
F1 [F1 Int] ~ F1 Int

Do not allow bare type variable to appear as the RHS.



Verifying injectivity annotation: design challenges

type family F2 a = r | r -> a

type instance F2 a = a

F2 is injective.

Allow bare type variable as RHS if all LHS patterns are bare variables.



Verifying injectivity annotation: design challenges

type family F3 a = r | r -> a

type instance F3 [a] = F3 a

F3 is not injective:
F3 [Int]
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Verifying injectivity annotation: design challenges

type family F3 a = r | r -> a

type instance F3 [a] = F3 a

F3 is not injective:
F3 [Int] ~ F3 Int

Disallow calls to type families?



Verifying injectivity annotation: design challenges

type family F4 a = r | r -> a

type instance F4 [a] = [G a]

type instance F4 (Maybe a) = H a -> Int

F4 is injective if G and H are injective.

Do not allow calls to type families at the top level of RHS.



Verifying injectivity annotation: design challenges

type family F5 a = r | r -> a

type instance F5 [a] = [G a]

type instance F5 (Maybe a) = [H a]

F5 is not injective.

Assume that a type family application unifies with any type.



Injectivity check

Definition (Injectivity check)

A type family F is n-injective iff:

1 For every equation F σ = τ :

I τ is not a type family application, and
I if τ = αi (for some type variable αi ), then σ = α.

2 Every pair of equations F σi = τi and F σj = τj (including i = j) is
pairwise-n-injective.



Pairwaise-n-injectivity

Definition (Pairwise-n-injectivity)

A pair of equations F σi = τi and F σj = τj is pairwise-n-injective iff
either:

1 τi and τj do not unify

2 τi and τj unify with substitution θ and θ(σin) = θ(σjn)



Pre-unification of types

Pre-unification algorithm

We use a special variant of the unification algorithm that:

1 treats type family application as possibly unifying with any other type

2 looks under injective type family applications

3 does not find solutions involving infinite types



type family Id a = r | r -> a

type instance Id Int = Int

type instance Id Bool = Bool

id :: Id t -> Id t

id x = x

foo = id True



type family Id a = r | r -> a

type instance Id Int = Int

type instance Id Bool = Bool

id :: (Id a ~ Id b) => a -> b

id x = x

foo = id True



Injective type families vs. functional dependencies

There is a close similarity between injective type families and type classes
with functional dependencies.

Our implementation of injective type families is not yet as expressive as
functional dependencies.



data Nat = Zero | Succ a

class Add a b r | a b -> r, r a -> b

instance Add Zero b b

instance (Add a b r) => Add (Succ a) b (Succ r)



data Nat = Zero | Succ a

type family AddTF a b = r | r a -> b where

AddTF Zero b = b

AddTF (Succ a) b = Succ (AddTF a b)



Summary and future work

More in the paper:

I real-life examples
I detailed description of type inference using injectivity
I soundness and completeness, with proofs
I kind injectivity

Current work:

I extending Core
I generalized injectivity
I full proof of soundness
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Table: Popularity of selected type-level programming language extensions.

Language extension no. of using packages

TypeFamilies 1092
GADTs 612
FunctionalDependencies 563
DataKinds 247
PolyKinds 109



U(α, τ) θ = U(θ(α), τ) θ α ∈ dom(θ) (1)
U(α, τ) θ = Just θ α ∈ ftv(θ(τ)) (2)
U(α, τ) θ = Just ([α 7→ θ(τ)] ◦ θ) α 6∈ ftv(θ(τ)) (3)
U(τ, α) θ = U(α, τ) θ (4)

U(σ1 σ2, τ1 τ2) θ = U(σ1, τ1) θ >>= U(σ2, τ2) (5)
U(H,H) θ = Just θ (6)

U(F (σ),F (τ)) θ = U(σi , τi ) θ >>= F is i-injective (7)
. . . >>= ...etc...
U(σj , τj) F is j-injective

U(F (σ), τ) θ = Just θ (8)
U(τ,F (σ)) θ = Just θ (9)

U(σ, τ) θ = Nothing (10)


