
Haskell Symposium 2015

Vancouver, Canada

Simon Peyton Jones
Microsoft Research Cambridge

Jan Stolarek
Politechnika Lódzka

Richard A. Eisenberg
University of Pennsylvania

Injective Type Families for Haskell

type family Id a

type instance Id Int = Int

type instance Id Bool = Bool

id :: Id t -> Id t

id x = x

foo = id True

Couldn’t match expected type ‘Id t’

with actual type ‘Bool’

The type variable ‘t’ is ambiguous

type family Id a

type instance Id Int = Int

type instance Id Bool = Bool

id :: Id t -> Id t

id x = x

foo = id True

Problem: not possible to infer at call site what type variable t should be

Our solution: injective type families

Couldn’t match type ‘Id t’ with ‘Id t0’

NB: ‘Id’ is a type function, and may not be injective

The type variable ‘t0’ is ambiguous

Expected type: Id t -> Id t

Actual type: Id t0 -> Id t0

Our contributions

Backwards-compatible extension to type families, which allows users to an-
notate type families with injectivity information.

Algorithm for checking validity of user’s injectivity annotation (+ proofs).

Type inference using injectivity information.

Comparison of injective type families with functional dependencies.

What is injectivity?

Definition (Injectivity)

A type family F is n-injective (i.e. injective in its n’th argument)
iff ∀σ, τ : F σ ∼ F τ =⇒ σn ∼ τn

Intuition

If F is n-injective then result of type family reduction F τ uniquely
determines the arguments τn

Annotating type families with injectivity information

type family F a b c = r | r -> a c

type instance F Int Bool Char = Int

type instance F Int Double Char = Int

type instance F Char Int Double = Char

Annotating type families with injectivity information

type family F a b c = r | r -> a c

type instance F Int Bool Char = Int

type instance F Int Double Char = Int

type instance F Char Int Double = Char

type instance F Char Char Char = Int

Type family equations violate injectivity annotation:

F Int Bool Char = Int

F Char Char Char = Int

Verifying injectivity annotation: design challenges

type family F1 a = r | r -> a

type instance F1 [a] = a

F1 is not injective:
F1 [F1 Int]

Verifying injectivity annotation: design challenges

type family F1 a = r | r -> a

type instance F1 [a] = a

F1 is not injective:
F1 [F1 Int] ~ F1 Int

Verifying injectivity annotation: design challenges

type family F1 a = r | r -> a

type instance F1 [a] = a

F1 is not injective:
F1 [F1 Int] ~ F1 Int

Do not allow bare type variable to appear as the RHS.

Verifying injectivity annotation: design challenges

type family F2 a = r | r -> a

type instance F2 a = a

F2 is injective.

Allow bare type variable as RHS if all LHS patterns are bare variables.

Verifying injectivity annotation: design challenges

type family F3 a = r | r -> a

type instance F3 [a] = F3 a

F3 is not injective:
F3 [Int]

Verifying injectivity annotation: design challenges

type family F3 a = r | r -> a

type instance F3 [a] = F3 a

F3 is not injective:
F3 [Int] ~ F3 Int

Verifying injectivity annotation: design challenges

type family F3 a = r | r -> a

type instance F3 [a] = F3 a

F3 is not injective:
F3 [Int] ~ F3 Int

Verifying injectivity annotation: design challenges

type family F3 a = r | r -> a

type instance F3 [a] = F3 a

F3 is not injective:
F3 [Int] ~ F3 Int

Disallow calls to type families?

Verifying injectivity annotation: design challenges

type family F4 a = r | r -> a

type instance F4 [a] = [G a]

type instance F4 (Maybe a) = H a -> Int

F4 is injective if G and H are injective.

Do not allow calls to type families at the top level of RHS.

Verifying injectivity annotation: design challenges

type family F5 a = r | r -> a

type instance F5 [a] = [G a]

type instance F5 (Maybe a) = [H a]

F5 is not injective.

Assume that a type family application unifies with any type.

Injectivity check

Definition (Injectivity check)

A type family F is n-injective iff:

1 For every equation F σ = τ :

I τ is not a type family application, and
I if τ = αi (for some type variable αi), then σ = α.

2 Every pair of equations F σi = τi and F σj = τj (including i = j) is
pairwise-n-injective.

Pairwaise-n-injectivity

Definition (Pairwise-n-injectivity)

A pair of equations F σi = τi and F σj = τj is pairwise-n-injective iff
either:

1 τi and τj do not unify

2 τi and τj unify with substitution θ and θ(σin) = θ(σjn)

Pre-unification of types

Pre-unification algorithm

We use a special variant of the unification algorithm that:

1 treats type family application as possibly unifying with any other type

2 looks under injective type family applications

3 does not find solutions involving infinite types

type family Id a = r | r -> a

type instance Id Int = Int

type instance Id Bool = Bool

id :: Id t -> Id t

id x = x

foo = id True

type family Id a = r | r -> a

type instance Id Int = Int

type instance Id Bool = Bool

id :: (Id a ~ Id b) => a -> b

id x = x

foo = id True

Injective type families vs. functional dependencies

There is a close similarity between injective type families and type classes
with functional dependencies.

Our implementation of injective type families is not yet as expressive as
functional dependencies.

data Nat = Zero | Succ a

class Add a b r | a b -> r, r a -> b

instance Add Zero b b

instance (Add a b r) => Add (Succ a) b (Succ r)

data Nat = Zero | Succ a

type family AddTF a b = r | r a -> b where

AddTF Zero b = b

AddTF (Succ a) b = Succ (AddTF a b)

Summary and future work

More in the paper:

I real-life examples
I detailed description of type inference using injectivity
I soundness and completeness, with proofs
I kind injectivity

Current work:

I extending Core
I generalized injectivity
I full proof of soundness

Haskell Symposium 2015

Vancouver, Canada

Simon Peyton Jones
Microsoft Research Cambridge

Jan Stolarek
Politechnika Lódzka

Richard A. Eisenberg
University of Pennsylvania

Injective Type Families for Haskell

Table: Popularity of selected type-level programming language extensions.

Language extension no. of using packages

TypeFamilies 1092
GADTs 612
FunctionalDependencies 563
DataKinds 247
PolyKinds 109

U(α, τ) θ = U(θ(α), τ) θ α ∈ dom(θ) (1)
U(α, τ) θ = Just θ α ∈ ftv(θ(τ)) (2)
U(α, τ) θ = Just ([α 7→ θ(τ)] ◦ θ) α 6∈ ftv(θ(τ)) (3)
U(τ, α) θ = U(α, τ) θ (4)

U(σ1 σ2, τ1 τ2) θ = U(σ1, τ1) θ >>= U(σ2, τ2) (5)
U(H,H) θ = Just θ (6)

U(F (σ),F (τ)) θ = U(σi , τi) θ >>= F is i-injective (7)
. . . >>= ...etc...
U(σj , τj) F is j-injective

U(F (σ), τ) θ = Just θ (8)
U(τ,F (σ)) θ = Just θ (9)

U(σ, τ) θ = Nothing (10)

