
Haskell Symposium 2014
Gothenburg, Sweden

Richard A. Eisenberg
University of Pennsylvania

Jan Stolarek
Politechnika Łódzka

Promoting Functions to Type Families in Haskell



Support for type-level programming in GHC

GHC provides many extensions for type-level programming:

functional dependencies
GADTs
open type families
datakinds
kind polymorphism
type-level literals
closed type families

Are we there yet?



Support for type-level programming in GHC

A lot of constructs are missing at the type level:

lambdas
partial application
higher order functions
case expressions
let statements
where clauses
guards

typeclasses
records
arithmetic sequences
infinite data structures
higher-kinded types
do-notation
list comprehensions

Our answer is “almost”



Towards dependently-typed Haskell

Identify a subset of term language that can be encoded at the type
level.

Adam Gundry’s work1 reformulates Core. Ours does not.

Adam Gundry’s shared subset excludes partial application at the type
level. Ours does not.

A step towards dependently-typed Haskell.

1Type Inference, Haskell and Dependent Types, Gundry 2013



Our contributions

Provide programmers with access to convenient type-level programming
by promoting term-level definitions to the type level.

Our solution implemented using Template Haskell. Available as
singletons library.

Explore the design space for a possible future GHC extension.



Key ideas behind promotion

use lambda lifting (Johnson, 1985) to promote case, let and lamb-
das
use defunctionalization (Reynolds, 1972) to implement partial ap-
plication and first-class functions at the type level



Promoting case, let and lambdas with lambda lifting

To promote case, let and lambdas we:

convert each to a type family
in-scope bindings become explicit parameters



Promoting case expression - an example

Term-level definition:

fromMaybe :: a -> Maybe a -> a
fromMaybe d x = case x of
Nothing -> d
Just v -> v

Promoted type-level definitions:

type family FromMaybe (t1 :: a) (t2 :: Maybe a) :: a
where
FromMaybe d x = Case d x x

type family Case d x scrut where
Case d x Nothing = d
Case d x (Just v) = v



Why do we need defunctionalization?



GHC’s type inference assumptions

GHC’s type inference relies crucially on these assumptions to perform
type decomposition:
1 (a b) ~ (a c) implies b ~ c (injectivity)
2 (a b) ~ (c d) implies a ~ c (generativity)

Both are true for type constructors. But neither is for type families.

Allowing type variables to unify with unsaturated type families would
be incompatible with these assumptions. Defunctionalization allows us
to loosen up that restriction.



Defunctionalization by example

data Nat = Z | S Nat

pred :: Nat -> Nat
pred Z = Z
pred (S n) = n

pred can be used unsaturated, eg. it can be passed as an argument
to a higher-order function:

map pred [Z, S Z]



Defunctionalization by example

data Nat = Z | S Nat

type family Pred (a :: Nat) :: Nat where
Pred Z = Z
Pred (S n) = n

But it is invalid to write:

Map Pred ’[Z, S Z]



Defunctionalization by example

data Nat = Z | S Nat

type family Pred (a :: Nat) :: Nat where
Pred Z = Z
Pred (S n) = n

Instead, we will write this:

Map PredSym ’[Z, S Z]

data PredSym :: Nat ->> Nat

PredSym @@ n = Pred n



Applying symbols

To use the symbols we define application operator:

type family (f :: k1 ->> k2) @@ (x :: k1) :: k2

In other words @@ has the kind (k1 ->> k2) -> (k1 -> k2): it turns
our symbols into actual functions that GHC can apply.



Promotion in action

data Nat = Z | S Nat

$(promote [d|
pred :: Nat -> Nat
pred Z = Z
pred (S n) = n
|])



Promotion in action

$(promote [d|
nub :: (Eq a) => [a] -> [a]
nub l = nub’ l []
where
nub’ [] _ = []
nub’ (x:xs) ls
| x ‘elem‘ ls = nub’ xs ls
| otherwise = x : nub’ xs (x:ls)

|])



Could we avoid defunctionalization?



Could we avoid defunctionalization?

We believe the answer is ”yes”.

We use symbols to work around GHC’s current limitations.

But our encoding is not incompatible with GHC’s type inference.



Could we avoid defunctionalization?

We only need explicit type family application @@ and a new kind ->> for
non-injective non-generative type-level functions:

type family Map (f :: a ->> b) (xs :: [a]) :: [b] where
Map f [] = []
Map f (x : xs) = (f @@ x) : (Map f xs)



Unpromotable language features



Unpromotable language features

infinite terms
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

arithmetic sequences that use infinite terms ([1..])
literals limited by GHC’s built-in literal promotion
Show and Read typeclasses require manipulation of strings
do-notation would require higher-sorted kinds
list comprehensions are syntax sugar for the do-notation



Your next steps

cabal install singletons

https://github.com/goldfirere/singletons

read the paper to learn about:
I promoting Prelude and some Data.* modules
I promoting type classes and instances
I formal proof of our algorithm
I kind inference
I and more...

start dependently-typed programming in Haskell today

send pull requests to
https://github.com/sweirich/dth



Haskell Symposium 2014
Gothenburg, Sweden

Richard A. Eisenberg
University of Pennsylvania

Jan Stolarek
Politechnika Łódzka

Promoting Functions to Type Families in Haskell



Encoding ->>

We declare

data TyFun :: * -> * -> *

and write ’TyFun a b -> * to express a ->> b.

But we prefer

(a ->> b) ->> Maybe a ->> Maybe b

to

TyFun (TyFun a b -> *) (TyFun (Maybe a) (Maybe b) -> *) -> *



Classifying functions

GHC uses -> to classify different kinds of functions:

term-level functions: can be partially applied; neither generative
nor injective,
type constructors: can be partially applied; both generative and
injective,
type families: cannot be partially applied; neither generative nor
injective.

We introduce ->> to classify type-level functions that can be partially
applied and are neither generative nor injective.



Defunctionalization by (a more involved) example

type family Plus (a :: Nat) (b :: Nat) :: Nat where
Plus Z m = m
Plus (S n) m = S (Plus n m)

data PlusSym0 :: Nat ->> Nat ->> Nat
data PlusSym1 :: Nat -> Nat ->> Nat

Plus :: Nat -> Nat -> Nat

type instance PlusSym0 @@ n = PlusSym1 n
type instance (PlusSym1 n) @@ m = Plus n m


