
<Programming> 2018

Nice, France

Jan Stolarek James Cheney

University of Edinburgh

Language-integrated Provenance in Haskell

Provenance

Tracing the origin of data.

This talk will focus on provenance in database context.

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

Query: names and phone numbers of agencies organizing boat tours

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

SELECT et.name, a.phone

FROM agencies AS a, externaltours AS et

WHERE (a.name = et.name) AND (et.type = ’boat’)

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

result

id name phone

1 EdinTours 412 1200
2 EdinTours 412 1200
3 Burns’s 607 3000

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

result

id name phone with where-provenance tracking

1 EdinTours (data = 412 1200, prov = (“agencies”, “phone”, 1))
2 EdinTours (data = 412 1200, prov = (“agencies”, “phone”, 1))
3 Burns’s (data = 607 3000, prov = (“agencies”, “phone”, 2))

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

result

id name phone with where-provenance tracking

1 EdinTours (data = 412 1200, prov = (“agencies”, “phone”, 1))
2 EdinTours (data = 412 1200, prov = (“agencies”, “phone”, 1))
3 Burns’s (data = 607 3000, prov = (“agencies”, “phone”, 2))

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

result

id name phone lineage

1 EdinTours 412 1200 [(“agencies”, 1), (“externaltours”, 5)]
2 EdinTours 412 1200 [(“agencies”, 1), (“externaltours”, 6)]
3 Burns’s 607 3000 [(“agencies”, 2), (“externaltours”, 7)]

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

result

id name phone lineage

1 EdinTours 412 1200 [(“agencies”, 1), (“externaltours”, 5)]
2 EdinTours 412 1200 [(“agencies”, 1), (“externaltours”, 6)]
3 Burns’s 607 3000 [(“agencies”, 2), (“externaltours”, 7)]

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

externaltours

id name destination type

3 EdinTours Edinburgh bus
4 EdinTours Loch Ness bus
5 EdinTours Loch Ness boat
6 EdinTours Firth of Forth boat
7 Burns’s Islay boat
8 Burns’s Mallaig train

result

id name phone lineage

1 EdinTours 412 1200 [(“agencies”, 1), (“externaltours”, 5)]
2 EdinTours 412 1200 [(“agencies”, 1), (“externaltours”, 6)]
3 Burns’s 607 3000 [(“agencies”, 2), (“externaltours”, 7)]

Provenance

Still an experimental feature found only in research
prototypes (e.g. Links).

Our goal: provenance as library.

Our approach: extend Database Supported Haskell (DSH)
library with provenance support.

Haskell

In this talk Haskell = GHC (Glasgow Haskell Compiler)

Haskell is a purely functional, statically typed
programming language.

It has a rich and expressive type system.

Good for implementing Embedded Domain-Specific
Languages (EDSLs).

Database Supported Haskell

DSH created by Torsten Grust and Alexander Ulrich1.

Provides language-integrated queries in Haskell by
overloading list comprehension notation.

1“The Flatter, the Better: Query Compilation Based on the Flattening
Transformation”, ACM SIGMOD 2015

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

data Agency = Agency { a_id :: Integer

, a_name :: String

, a_based_in :: String

, a_phone :: String }

agencies :: Q [Agency]

agencies = table "agencies"

["id", "name", "based in", "phone"]

(TableHints [Key ["id"]])

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

data Agency = Agency { a_id :: Integer

, a_name :: String

, a_based_in :: String

, a_phone :: String }

agencies :: Q [Agency]

agencies = table "agencies"

["id", "name", "based in", "phone"]

(TableHints [Key ["id"]])

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

data Agency = Agency { a_id :: Integer

, a_name :: String

, a_based_in :: String

, a_phone :: String }

agencies :: Q [Agency]

agencies = table "agencies"

["id", "name", "based in", "phone"]

(TableHints [Key ["id"]])

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

data Agency = Agency { a_id :: Integer

, a_name :: String

, a_based_in :: String

, a_phone :: String }

agencies :: Q [Agency]

agencies = table "agencies"

["id", "name", "based in", "phone"]

(TableHints [Key ["id"]])

agencies

id name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

data Agency = Agency { a_id :: Integer

, a_name :: String

, a_based_in :: String

, a_phone :: String }

agencies :: Q [Agency]

agencies = table "agencies"

["id", "name", "based in", "phone"]

(TableHints [Key ["id"]])

Database Supported Haskell example

q1 :: Q [(String, String)]

q1 = [(et_name et, a_phone a)

| a <- agencies

, et <- externaltours

, a_name a == et_name et

, et_type et == "boat"]

SELECT a1.name AS i1, a0.phone AS i2

FROM agencies AS a0, externaltours AS a1

WHERE (a0.name = a1.name) AND (a1.type = ’boat’)

Lineage transformation

Lineage tracing obtained by calling a library function on
an existing query:

q1L :: Q (LT [(String, String)] Integer)

q1L = lineage q1

DSH compilation pipeline

1 Haskell source. GHC extensions + DSH module
imports

2 Frontend Language (FL). Typing invariants
embedded inside Haskell’s type system.

3 Additional translations and compilation to SQL.

Lineage transformation

Lineage transformation:

follows query rewriting approach developed in Links

global rewriting of the whole syntax tree

accompanied by a type translation

q1L :: Q (LT [(String, String)] Integer)

q1L = lineage q1

L([δ]) = [L(δ)L]
L(δ1, . . . , δn) = (L(δ1), . . . ,L(δn))

L(()) = ()
L(String) = String
L(Bool) = Bool
L(Int) = Int

Summary

Our achievements:

implementation of provenance tracking as part of a
library, rather than as part of a compiler

maintaining all the benefits of DSH type safety

Summary

Open questions and further research:

challenging to express typing rules in the EDSL
approach; perhaps a different meta-programming
technique would be better?

how to replicate this result in other languages (Scala,
F#)?

Summary

More in the paper:

where-provenance tracking

details on surface encodings of provenance

formal specification of FL, where-provenance and
lineage transformations

detailed description of DSH implementation and
explanation of technical challenges

Implementation available at:

https://github.com/jstolarek/skye-dsh

https://github.com/jstolarek/skye-dsh

<Programming> 2018

Nice, France

Jan Stolarek James Cheney

University of Edinburgh

Language-integrated Provenance in Haskell

