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Improving energy compaction of a wavelet transform
using genetic algorithm and fast neural network

JAN STOLAREK

In this paper a new method for adaptive synthesis of a smooth orthogonal wavelet, using
fast neural network and genetic algorithm, is introduced. Orthogonal lattice structure is pre-
sented. A new method of supervised training of fast neural network is introduced to synthesize
a wavelet with desired energy distribution between output signals from low–pass and high–pass
filters on subsequent levels of a Discrete Wavelet Transform. Genetic algorithm is proposed as
a global optimization method for defined objective function, while neural network is used as a
local optimization method to further improve the result. Proposed approach is tested by synthe-
sizing wavelets with expected energy distribution betweenlow– and high–pass filters. Energy
compaction of proposed method and Daubechies wavelets is compared. Tests are performed
using image signals.

Key words: wavelet transform, neural networks, genetic algorithms, signal processing,
lattice structure

1. Introduction

During the last two decades Discrete Wavelet Transform became one of the most
popular tool in the area of signal processing. Many different wavelets have been pro-
posed, such as Daubechies, Coiflet, Morlet, Shannon, Meyer,Battle-Lamarié or Mexi-
can hat wavelets [3, 9]. Each family of the wavelet functionshas its unique properties,
which makes some wavelets more suitable for particular applications than others. This
raises a problem of selecting the best wavelet for a given task, which leads to a question:
does there exist a wavelet that would be the best for the giventask, but has not been pro-
posed yet? To provide a general answer to this question a method for automatic adaptive
synthesis of wavelets for particular task should be developed.

First step towards adapting wavelets was parametrization of wavelet filter coeffi-
cients. Many such parametrizations have been proposed so far [7, 8, 11, 14, 24, 26]. A
crucial element in these methods is optimal selection of parameters’ values, which is
done either using numerical or analytic approach. In [15] and [23] lattice structure for
designing two–channel perfect reconstruction filters was presented. This approach was
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based on representing a filter bank in a form of parameterizedlattice structure. Parame-
ters were optimized using well–known numerical methods (e.g. quasi–Newton method)
and the resulting values, together with the lattice structure, defined the filter. Dietl, Meer-
wald and Uhl introduced wavelet parametrization to improveperformance in digital im-
age watermarking security [4, 10]. They proposed random selection of filter parameters
to increase watermark robustness against attacks. Shark and Yu proposed parametriza-
tion of wavelets using angles as trigonometric functions’ arguments and applying genetic
algorithm to synthesize shift–invariant wavelets [16].

So far, all the authors have concentrated their efforts on synthesizing wavelets that
are optimal with respect to some arbitrarily selected criterion e.g. smoothness or shift
invariance. However, there is no guarantee that such wavelet optimality will result in a
better performance of a wavelet-based signal processing algorithm. Therefore, methods
for wavelet synthesis based on rating the final result of signal processing using wavelets
should be explored in more detail.

This paper presents example of such a method. Proposed algorithm of wavelet
synthesis is based on a Fast Orthogonal Neural Network (FONN[17]) and Genetic
Algorithm (GA). Wavelet parametrization is based on an orthogonal lattice structure
[18, 21, 25]. Main contribution of this paper is introduction of a method for adaptive
synthesis of a wavelet with desired energy distribution between low–pass and high–pass
wavelet coefficients on subsequent levels of multilevel DWT. This approach concen-
trates not on the wavelet properties itself, but on the optimality of a signal resulting from
processing using wavelets. In such approach optimal wavelets “emerge” as a result of
fulfilling conditions imposed on the processed signal. Genetic algorithm will be applied
as a global optimization method, while Fast Orthogonal Neural Network (FONN) will
be used as a gradient method to further optimize defined objective function, starting
from minimum found using GA. These methods allow to synthesize a new wavelet that
will provide desired energy distribution between low–passand high–pass wavelet coef-
ficients for a particular class of signals (e.g. image or sound). Synthesizing the wavelet
with better energy compaction than already existing wavelets will allow to improve the
quality of compressed signals.

2. Orthogonal lattice structure

The lattice structure is – likewise the lifting scheme [22] –an alternative approach
to implementation of a wavelet filter bank [2, 15, 23]. In thispaper wavelet synthesis
is based on an orthogonal lattice structure proposed in [25]. Properties of that struc-
ture, especially its connection with the existing wavelet theory and ability to synthesize
valid orthogonal wavelet functions are discussed in [19]. Its computational complexity
is discussed in [25]. Below a definition of an orthogonal lattice structure is presented.

Orthogonal lattice structure is based on two–point base operations
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Figure 1. Lattice structure implementing 6–tap transform.

Sk =

[

cos(αk) sin(αk)

sin(αk) −cos(αk)

]

, (1)

wherek stands for index of the operation (see Fig. 1). Such two–point base operation
can be written in form of a matrix equation

[

t0
f0

]

= Sk ·

[

x0

x1

]

. (2)

For Sk given by equation 1, the following equality holds true:

S−1
k = (Sk)

T = Sk , (3)

whereS−1
k is the inverse ofSk and (Sk)

T is the transpose ofSk. It is therefore easy to
perform inverse of the transformation given by equation 2.

Lattice structure is composed ofK/2 stages, each containingSk operations repeated
N/2 times, whereK andN are the lengths of the filter’s impulse response and of a pro-
cessed signal respectively. On each stage of the lattice structure, elements of the signal
are processed in pairs bySk base operations. After each stage, base operations are shifted
down by one and a lower input of the last base operation in the current stage is connected
to the upper output of the first base operation in the preceding stage (s1 ands2 in Fig. 1).
Upper outputs of base operations in the last layer (t0, t1, t2 and t3 in Fig. 1) form the
trend signal−→t which corresponds to the low–pass filter output, while the lower out-
puts (f1, f2, f3 and f4 in Fig. 1) form the fluctuation signal

−→
f which corresponds to the

high-pass filter output.
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3. Wavelet synthesis using fast orthogonal neural network

In this section a wavelet synthesis criterion based on energy distribution between
output signals from low–pass and high–pass filters is presented. Although this algorithm
can be used to synthesize wavelets with any energy distribution, its most important appli-
cation is to synthesize wavelets that pack as much of the signal’s energy as possible into
low–pass wavelet coefficients. In a perfect situation – whole energy of a signal packed
into low–pass coefficients – this would allow to remove high–pass coefficients without
losing any information about the signal. Although such a situation is not possible, ap-
plying a wavelet that packs most of signal’s energy into the low–pass coefficients to
subsequent levels of a discrete wavelet transform, resultsin packing most of the signal’s
energy into small number of low–pass coefficients. If the synthesized wavelet compacts
more energy into low–pass coefficients than other existing wavelets (e.g. Daubechies),
then applying it to many levels of DWT would lead to packing more energy in the same
number of wavelet coefficients, thus giving a better qualityof a compressed signal. Once
the wavelet is synthesized, it is applied to processing of a signal in the same manner as
any other wavelets.

To synthesize a new wavelet with desired energy distribution between low–pass
and high–pass wavelet coefficients Fast Orthogonal Neural Network [17] with topology
based on orthogonal lattice structure is used.Sk base operations are represented using Ba-
sic Operation Orthogonal Neurons (BOON) – a special kind of neuron with two inputs
and two outputs, designed to perform two–point orthogonal operations. Training signals
are propagated through the network and, for each signal, error must be back-propagated.
However, expected output values for training signals remain unknown, since the only
thing that is defined is the output energy proportion betweenlow–pass and high–pass
wavelet coefficients. Hence existing supervised training methods have to be modified
and a new objective function must be defined. In [18] the following objective function
was proposed:

G(−→w) =
1
2

N/2

∑
j=1

[

(

d2
j − t2

j

)2
+
(

e2
j − f 2

j

)2
]

, (4)

whereN is the number of outputs of the network (the same as length of aprocessed
signal), j is the index of BOON in the output layer,t2

j is the energy of the low-pass
output of a j-th BOON,d2

j is the expected energy on that output,f 2
j is the energy of the

high-pass output of aj-th BOON,e2
j is the expected energy on that output. This function

measures how much does the actual energy proportion differ from the expected energy
proportion. Expected energiesd2

j ande2
j are calculated independently for each neuron,

based on its actual inputs, using formulas
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d2
j = h1 ·

[

(

x( j)
0

)2
+
(

x( j)
1

)2
]

,

e2
j = h2 ·

[

(

x( j)
0

)2
+
(

x( j)
1

)2
]

,

(5)

wherex( j)
0 andx( j)

1 are j-th neuron’s inputs andh1, h2 are expected energy proportions
between outputs, such that

h1 +h2 = 1 . (6)

This method allowed to effectively synthesize a wavelet with desired energy distribu-
tion for signals of particular class. However, only first level of signal analysis was taken
into account. Therefore it was possible that the synthesized wavelet had different energy
proportions on subsequent levels of wavelet transform. In order to synthesize wavelets
that ensure desired energy distribution on more than one level of signal analysis, multi-
level DWT of a signal has to be taken into account.
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Figure 2. Multilevel discrete wavelet transform.

Fig. 2 shows a diagram of multilevel DWT.−→x N is the input signal.H0 andH1 are
low–pass and high–pass filters respectively. Together theyform an orthogonal filter bank.
↓ represents signal decimation (removing every other sample).

−→
f (1),

−→
f (2), . . . ,

−→
f (M)

are the fluctuation (detail) signals1 and−→t is the trend (approximation) signal. In this
paper the above method of adaptive wavelet synthesis using neural network is extended
to further levels of DWT. The following synthesis criterionis proposed:

1With only one level of signal analysis we use
−→
f instead of

−→
f (1) to simplify the notation.
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Figure 3. Lattice structure performing two levels of signalanalysis.
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(7)

whereE (·) denotes energy of a signal,M denotes number of DWT levels andh1 andh2

are expected energy proportion between low–pass and high–pass outputs, as defined in
equations (5) and (6). This equation means that for each level of DWT the synthesized
wavelet is expected to give the same proportion between energy of low–pass wavelet
coefficients and energy of the input signal. Ifh1 = 1 is assumed then proposed method
will synthesize wavelets that pack as much energy of a signalas possible into the low-
pass wavelet coefficients.

It is important to notice, that it is not possible to find such afilter, that it will produce
exactly the expected energy proportions for each input signal. It is however possible to
determine such filter that, for a given class of signals, energy proportions will be true in
a statistical sense. Therefore it is important, that the wavelet is synthesized for signals of
particular class, e.g. image or sound.
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Using the lattice structure approach, multilevel DWT of a signal is performed by
appending another lattice structure to low–pass outputs ofthe lattice structure from
the previous stage. Fig. 3 shows example of a lattice structure implementing 6–tap
transform and performing 2 levels of DWT. Base operations for every level of DWT
are the same, as denoted by identicalSk operations in corresponding layers of the
network. This example network transforms signal(x0,x1,x2,x3,x4,x5,x6,x7) to signal

( f (2)
1 , f (1)

4 , t2, f (1)
1 , f (2)

2 , f (1)
2 , t1, f (1)

3 ), where( f (1)
1 , f (1)

2 , f (1)
3 , f (4)

4 ) is a first level detail sig-

nal (
−→
f (1) in Fig. 2),( f (2)

1 , f (2)
2 ) is a second level detail signal (

−→
f (2) in Fig. 2) and(t1, t2)

is a trend signal (−→t in Fig. 2). Signal periodicity is assumed.
Condition given in equation (7) means, that objective function given in equation (4)

has to be applied after completing every level of DWT. This means that expected energy
values are calculated after each level of DWT only for high–pass outputs of the current
level. Low–pass outputs serve as inputs for the next level ofanalysis. After completing
last level of DWT expected energy values are calculated for both low–pass and high–
pass outputs according to equation (4) and all the calculated values are back-propagated
through the network. For a straightforward determination of objective function’s gradi-
ent in respect to the weights, Signal Flow Graphs (SFG) are used [12, 13]. Due to a
non–standard form of objective function, adjustment of back-propagation algorithm is
required. To calculate the value of the objective function,each output of the network is
propagated through a branch that raises that value to the power of two, before comparing
it to the expected value (see equation (4)). For each output it is therefore necessary to
multiply back-propagated error value by−2t j (for low-pass outputs) or−2 f j (for high-
pass outputs). This is equal to the derivative of the quadratic function branch calculated
for the value propagated forward through that branch [12].

Weights modification is performed according to the steepestdescent algorithm:

−→wn+1 = −→wn−η ∇ G(−→w) , (8)

where−→wn is weights vector inn–th iteration,η is the learning step and∇ G(−→w) is error
function’s gradient calculated in respect to the network’sweights. Observations of sig-
nals in the network have shown, that values propagated through the network get bigger
on subsequent levels of DWT, which is expected since the low–pass wavelet coefficients
get bigger with each DWT level. This leads to a conclusion that on each level different
learning step must be used to counter that effect. Using smaller learning steps for later
levels prevents both skipping the minimum due to too big changes of weights and domi-
nation of the learning process by bigger derivatives on the last levels of analysis. Proper
selection of learning steps may be difficult and requires many experiments combined
with precise observation of values in the network. Adjustment of weights according to
equation (8) leads to finding the minimum of objective function G(−→w) (equation (4))
and therefore achieving desired distribution of energy between low–pass and high–pass
wavelet coefficients, for a given set of training signals.
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4. Global optimization using genetic algorithm

Steepest descent algorithm used in the training process of the network is a gradient
method and, although it is effective for synthesizing wavelets for two or three levels
of DWT, it is likely to get stuck in a local minimum when the number of DWT levels
increases. To prevent such situation, global optimizationusing genetic algorithms with
evolution strategies is introduced. Best solution found using the genetic algorithm is used
as a starting point for network training to further improve the result.

Algorithm 1 Genetic algorithm outline
1: Create random populationP of µ individuals
2: while (stop condition not satisfied)do
3: Calculate fitness of individuals in populationP
4: Create temporary populationT containingλ individuals by selection from popu-

lation P
5: Perform crossover and mutation on individuals in population T
6: Calculate fitness of individuals in populationT
7: Selectµ individuals to form new populationP
8: end while
9: Display best individual in populationP

Algorithm 1 shows outline of proposed genetic algorithm. Stop condition is either
reaching the maximum number of iterations (generations) denoted asgenmax or not get-
ting better results in subsequent generations (minimal expected improvement of fitness
will be denoted asimpmin). Other steps shown in the Algorithm 1 are discussed in detail
in the following subsections.

4.1. Representation of individuals

EachSk base operation is precisely defined by only one variable – angle αk. There-
fore lattice structure consisting ofN layers can be represented using onlyN numbers
(α1,α2, . . . ,αN), where eachαk ∈ [0,2π). Individuals in a genetic algorithm consist of
N chromosomes. Each chromosome representsαk for one layer of the lattice structure.
Let us denote chromosome representing value ofαk asck. Each chromosomeck is rep-
resented in a binary form usingm bits. Therefore each chromosome is an integer from
range[0,2m). Values of chromosomes are mapped to the values of angles (inradians)
using formula

αk =
ck ·π
2m−1 . (9)

4.2. Fitness evaluation

To evaluate fitness of an individual its chromosomes(c1,c2, . . . ,cN) are converted
to angles(α1,α2, . . . ,αN) using equation (9). Angle values are used to calculate base
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operations(S1,S2, . . . ,SN), which are then used to perform multilevel DWT on the data in
a training set using the lattice structure approach.

Individuals’ fitness is calculated based on the energy distribution on the subsequent
levels of DWT. For each individual the training signals are transformed and proportion
between energy of low–pass wavelet coefficients and input signal energy is calculated.
Low–pass coefficient are then transformed again and the sameproportion is calculated
for the second level of wavelet analysis (see equation (7)).This step is repeated required
number of times. The actual energy distribution for each level of DWT is compared to
expected energy distribution. The closer the actual value to the expected proportion, the
higher the individual’s fitness on that level. Fitness on a given leveli of DWT is therefore
determined using formula:

Fj(i) = |ME−|h1−AEPji || , (10)

where j is number of an individual,i is the level of DWT,ME is maximal possible
error in energy distribution,h1 is expected energy proportion andAEPji is actual energy
proportion oni–th level of DWT for j–th individual, calculated using the formula

AEPji =































E (
−→t j )+ ∑M

k=i+1E (
−→
f j

(k))

E (
−→t j )+ ∑M

k=i E (
−→
f j

(k))
for i < M

E (
−→t j )

E (
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f j

(M))+E (
−→t j )

for i = M

, (11)

whereE (·) denotes energy of a signal,M denotes number of DWT levels,−→t j denotes

the trend (approximation) signal of thej-th individual and
−→
f j

(k) denotes the fluctuation
signal onk-th level of DWT for j-th individual (see Fig. 2). In equation (10),|h1−AEPji |
is an error made by an individual in the distribution of energy. The closer this error to 0,
the higher the fitness. It is important to ensure that both actual energy proportion error
h1−AEPji and the fitness are positive numbers. Hence the absolute values are used.

Since energy proportion between low–pass wavelet coefficients and input signal’s
energy can change from 0 (whole signal energy packed into high–pass coefficients) to 1
(whole signal energy packed into low–pass coefficients), maximal possible errorME is
determined using the formula:

ME = max(h1,1−h1) , (12)

whereh1 is expected energy proportion between low–pass coefficients and input signal’s
energy. Equations 10, 11 and 12 ensure that fitness values fall in range[0,1].

Training set contains many signals, therefore individual’s fitness for a given level of
DWT is calculated as an average of fitness valuesFj(i) for all signals in a training set.
Total fitnessF of an individual is calculated by averaging partial fitnessFj(i) calculated
for every level of DWT:
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Fj =
∑M

i=1 Fj(i)

M
, (13)

where j is number of an individual andM is a number of DWT levels.

4.3. Selection, crossover and mutation

Temporary populationT is created by selectingλ individuals from populationP.
Tournament selection is used. Each individual from population T can be selected for
crossing over with other individual from that population with probability pc. One point
crossover is performed. Crossing point is chosen randomly.Each locus (bit in a chro-
mosome) in populationT can be selected for mutation with probabilitypm. Mutation is
performed by reversing value of selected bits.

4.4. Evolution strategies

During experiments with adaptive synthesis of wavelets using GA it was discovered,
that although proposed method was able to find good solutions, individuals with very
low fitness (close to 0) were not eliminated from the population. In many cases this lead
to destabilization of optimization process. As a solution to the problem evolution strate-
gies [1] were introduced. Usage of modified(µ,λ) and(µ+ λ) strategies is proposed,
as outlined in Algorithm 1. In(µ,λ) strategy a new populationP is created by selecting
µ fittest individuals from a temporary populationT (assumingλ > µ). In (µ+ λ) strat-
egy the new populationP is created by selectingµ fittest individuals from bothP andT
populations. There are two important differences between evolution strategies proposed
in literature and in presented approach: individuals have binary representation instead
of real–number representation and there is no self–adaptation. As will be shown in sec-
tion 5 evolution strategies allow to eliminate unfit individuals from the population, and
therefore improve optimization process.

5. Experimental validation

5.1. Testing methodology

Proposed genetic algorithm and fast neural network with topology based on orthog-
onal lattice structure for multilevel DWT were implementedusing Java and Matlab pro-
gramming languages. Two different data sets were prepared.One set was used to synthe-
size the wavelet (training set), the other one was used for testing. Both sets contained 512
signals, each signal with length of 512. Tests were carried out using image data taken
from rows of a grayscale images. Initial population in a genetic algorithm was selected
randomly. Initial weights of a neural network were set to values of the best lattice struc-
ture synthesized by the genetic algorithm. Therefore neural network was used to further
improve result obtained using GA.



IMPROVING ENERGY COMPACTION OF A WAVELET TRANSFORM 427

Table 4. Wavelet synthesis with genetic algorithm using image data.

Expected Actual results [%]

energy of low–pass 4–tap transform 6–tap transform 8–tap transform

coefficients [%] training testing training testing training testing

50 50.05 49.96 50.13 49.99 49.81 49.88

70 70.18 70.07 69.95 69.58 69.76 70.90

100 99.45 99.65 99.50 99.65 98.81 99.50

Daubechies 99.45 99.65 99.48 99.65 99.51 99.66

Table 5. Improvement of results obtained using the genetic algorithm and fast neural network.

Expected Actual results [%]

energy of low–pass 4–tap transform 6–tap transform 8–tap transform

coefficients [%] training testing training testing training testing

50 50.03 49.94 50.05 49.91 49.77 49.84

70 70.06 69.95 69.95 69.58 69.84 70.90

100 99.46 99.64 99.50 99.65 99.28 99.59

Daubechies 99.45 99.65 99.48 99.65 99.51 99.66

Wavelet synthesis was tested using 4–tap, 6–tap and 8–tap transforms with 4 levels
of signal analysis. Neural network was trained using off–line teaching with 10 training
epochs. Optimal values of parameters in the neural network (e.g. learning steps for each
level of analysis) may differ depending on number of layers in the network and desired
energy distribution. Genetic algorithm performs equally well for different energy distri-
butions using the same parameters. Following values were used for the experiments:

• crossover probabilitypc = 0.98,

• mutation probabilitypm = 0.03,

• populationP sizeµ= 20,

• temporary populationT sizeλ = 40,

• maximum generationsgenmax= 10,

• minimum expected improvement between generationsimpmin = 10−4.

Both proposed evolution strategies have shown to give similar results. The experiments
were carried out using(µ,λ) strategy.
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Figure 4. 4–tap wavelet synthesized using GA.
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Figure 5. Change of individuals’ fitness during GA optimization.

5.2. Results and discussion

Tab. 4 shows the results of wavelet synthesis using genetic algorithm. Tab. 5 shows
results of improving wavelets synthesized using GA with fast neural network. In both
tables the first column shows expected percentage of input energy located in the low–
pass coefficients (h1 in equation (7)) on each level of signal analysis. Remainingamount
of energy is located in the high–pass coefficients, summing up to give a total of 100%.
Remaining columns show testing result obtained on both training and testing sets, ex-
pressed as an average of actual percentage of energy locatedin low–pass coefficients
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on each level of signal analysis. Three different energy distributions were tested. Both
tables present energy distribution for Daubechies wavelets.

Results in Tab. 4 show that proposed method of wavelet synthesis using the ge-
netic algorithm is able to synthesize a wavelet with desiredenergy distribution between
low–pass and high–pass wavelet coefficients with error lessthan 1%. For the highest
requested energy compaction of 100% it synthesizes wavelets that perform similarly
to Daubechies wavelets. Fig. 4 shows an example of smooth 8-tap wavelet synthesized
using GA.

Figure 6. 8–tap wavelet synthesized using GA (left) and thenimproved using FONN (right).

Fig. 5 shows how fitness (vertical axis) of the individuals inthe population changes
between iterations (horizontal axis) of genetic algorithm. Figure shows the fitness of the
best and the worst individual in the population as well as an average fitness value in the
population.impmin was set to 0 for this experiment andgenmax was set to 8. Population
denoted as 0 on horizontal axis is the initial randomized population. We can see that
with evolution strategies individuals with low fitness are eliminated from the population
(fitness of worst individual increases in subsequent iterations of the algorithm). In 5–th
iteration optimization process stabilizes – only individuals with the highest fitness re-
main in the population. Following generations bring improvement of the best solution
by approx. 0.02%. Although elimination of unfit individuals is desired, too fast elimina-
tion of diversity in a population leads to premature convergence. This may lead to finding
suboptimal solutions. Problem may be countered by increasing mutation rate, although
this may destabilize optimization process by “damaging” good solutions.

As shown in Tab. 5 neural network can be used to further improve achieved results.
It is expected that FONN can improve results on the training set, since it attempts to
fit to the training data as much as possible. Hence there can beno guarantee as for the
improvement of results on the testing set. Tables 4 and 5 demonstrate that with FONN



430 J. STOLAREK

results for the training set have improved in 6 out of 9 test. In 2 cases there was no change
in the result. For the testing set 2 results have improved and3 remained unchanged.

Fig. 6 shows example of improving the result obtained using GA. Left image shows
8–tap wavelet with desired energy distribution of 100% synthesized using GA. Right
image shows further improvement of this wavelet with FONN. It can be seen that neural
network produced a wavelet that is smoother than the one synthesized by the genetic
algorithm. It can also be noticed from the tables that this lead to improvement of the
result by 0.47% for the training set and 0.09% for the testing set.

Algorithm performance was measured on a computer with IntelCore 2 Duo T8300
processor (each of two cores operating at 2.4GHz frequency). Neural network was im-
plemented in Java as a single threaded application. Averagesynthesis time was 39.2 sec-
onds for 4–tap transforms, 44.5 seconds for 6–tap transforms and 50.5 seconds for 8–tap
transforms (total time of 10 epochs). Genetic algorithm wasimplemented using Matlab
programming language and it is capable of operating on both cores paralel. Using the
Matlab Profiler, the precise time of execution was measured.The most time consuming
task is the estimation of individuals’ fitness. When only oneprocessing core is used, av-
erage time needed to evaluate fitness of an individual is 1.85s. Enabling parallel compu-
tations on both processor cores reduces the average time needed to calculate individual’s
fitness to 0.93s. Length of the filter being synthesized doesn’t influence the performance
significantly. Nevertheless, in each iteration the fitness of about 40–60 individuals has to
be estimated (temporary population can be smaller with(µ+ λ) strategy). Convergence
analysis (Fig. 5) has shown, that algorithm stabilizes around 5th–6th iteration, so using
greater number of iterations is unnecessary. This implies,that the whole synthesis pro-
cess using genetic algorithm can take approximately from 220 to 390 seconds (assuming
parallel computations on two cores). Such a long time might be unacceptable for daily
usage and has to be improved.

It must be noted, that neural network implementation in Javais designed as a re-
search application and therefore it is not fully optimized.It relies heavily on design pat-
terns utilizing polymorphism (e.g. Template Method), which is known to significantly
degrade the program’s performance. Genetic algorithm implementation was optimized
with the aid of Matlab Profiler and, in its current form, cannot be significantly optimized.
However, it must be noted that elements of the input signal are processed by the lattice
structure independently in pairs. This implies, that lattice structure can be implemented
using technologies with SIMD (Single Instruction, Multiple Data) capabilities. More-
over, the lattice structure itself doesn’t include any conditional instructions. Therefore it
seems that, for production purposes, the NVidia CUDA technology would be the most
appropriate to implement the proposed algorithms. CUDA is aparallel computing archi-
tecture that makes use of the GPU and is designed to process huge streams of data with a
set of identical instructions. Such an implementation should bring a significant improve-
ment in the performance, thus making proposed algorithms suitable for daily usage on
personal computers.
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6. Conclusions

In this paper a new method for adaptive synthesis of a wavelettransform using ge-
netic algorithm and Fast Orthogonal Neural Network with topology based on the or-
thogonal lattice structure was presented. New optimization criterion based on energy
distribution on subsequent levels of DWT was introduced. This criterion puts emphasis
on the final result of signal processing rather than on the wavelet itself. This is the most
important contribution of this paper, since so far authors have concentrated directly on
wavelet properties, while in this approach optimal wavelet“emerges” indirectly as a re-
sult of fulfilling optimality criteria by the wavelet–processed signal. Experiments have
shown that proposed criterion can be used for adaptive synthesis of a new wavelet with
desired energy distribution for a signal of particular class. Presented approach was com-
pared with Daubechies wavelets in terms of energy compaction. Results have shown that
the wavelets synthesized with genetic algorithm and neuralnetwork can perform better
than the Daubechies wavelets.

Within further development of proposed method Hierarchical Fair Competition [5]
should be considered to solve the problem of premature convergence in the genetic al-
gorithm. It is also possible to treat fitness valuesFj(i) as a separate optimization cri-
teria and view the whole problem solved by the genetic algorithm as a multi-objective
optimization. This would allow to introduce evolutionary multi-objective optimization
methods, e.g. Global Optimality Level [6]. Implementationcan be improved by using
NVidia CUDA technology.

Future research will concentrate on adjusting presented methods to allow wavelet
synthesis for improving digital image watermarking fidelity. First experiments have al-
ready been carried out and the results are promising [20].
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