
REALIZATION OF DAUBECHIES TRANSFORM
USING LATTICE STRUCTURE

J. Stolarek
Technical University of Lodz
Institute of Computer Science

ul. Wolczanska 215, 90-924 Lodz, Poland
e-mail : stolarek@ics.p.lodz.pl

1. Introduction
Wavelet transforms play an important role in processing, compression and analysis of signals [1, 7, 8]. Wavelet
transform is linear, similarly to DFT, DCT, DST and DHT. However it uses different basis functions. Wavelet
functions, unlike sinusoidal functions used by other mentioned transforms, are precisely located in time domain,
thus allowing to obtain detailed information about local characteristics of a signal. However, there is no single
basis function for all wavelet transforms. Many wavelet families are known. It is important, that chosen wavelet
family closely corresponds to characteristics of analysed signal. One of the most frequently used wavelet
functions are the Daubechies wavelets, especially the simplest Daubechies 4 that allows efficient implementation
and straightforward interpretation of results. Thanks to their properties, Daubechies wavelets are well suited for
processing natural signals. However, it is possible to synthesize wavelet function more suitable for particular
task using adaptive methods [1, 8]. Neural networks offer the possibility to adaptively synthesize wavelet
functions. Especially promising are the fast multilayer linear neural networks that are able to realize wide class
of linear transforms [2, 6].

This paper presents analysis of new approach to wavelet synthesis, based on lattice structure proposed
in [9]. Main goal is practical verification of this approach, by showing that neural network based on proposed
lattice structure is able to learn existing Daubechies wavelet transforms.

2. Lattice structure
Lattice structure for realization of wavelet transforms was proposed in [9]. Basic element of neural network
based on this structure is presented in Fig. 1a. This element (further referred to as the “neuron”) has two inputs,
two outputs and four different weights. Therefore it can be treated as two independent ordinary linear neurons,
with two inputs and one output each. Operation performed by this element can be treated as a 2-by-2 matrix
multiplication:

[y1

y2
]=P⋅[x1

x2
] , where P=[w11 w12

w21 w22
] . (1)

Network architecture is presented in Fig. 1b. Weights of all neurons within one layer are identical.
Neurons on the edge of a layer are wrapped around, which is equivalent to assuming that transformed signal is
periodic. Neurons in the network are sparsely connected, i.e. the number of connections between layers is small,
unlike the multilayer perceptron, where neurons in adjacent layers are connected all-to-all.

Network's ability to perform particular wavelet transform depends on number of layers. In case of three-
layer network in Fig. 1b, each output depends on six inputs, which means that this network is suitable for
realization of 6-tap transform. In general, to calculate m-tap transform, m / 2 layers are necessary. Network
shown in Fig. 1b has eight inputs and eight outputs, however it doesn't mean that it is capable of processing only
eight-element signals. Actual implementation of network allows to operate on any signal of even length. It is
possible thanks to identical weights of neurons in one layer.

Same network can be used for calculating the inverse transform. To achieve this, network direction
should be reversed (inputs become outputs) and weight matrices, denoted in Equation 1 as P, should be replaced
with inverse matrices:

[x 1

x 2
]=P−1

⋅[y1

y2
] , where P=[w11 w12

w21 w22
] . (2)

Network was taught using backpropagation algorithm based on signal flow graph method [3, 5], which

allowed for straightforward gradient calculation of error function in respect to weights. Weights modification
was performed according to steepest descent algorithm [4]:

wn1=wn− ∇ E w  , (3)
where wn is weights vector in n-th iteration, η is the learning step and ∇ E w is error function gradient
calculated in respect to network weights.

Supervised teaching was used to teach the network – for each input signal expected output was known.
Error function minimized during learning process is:

E=∑
i=0

k −1  yi−d i
2

k
, (4)

where yi denotes signal value on i-th output of network, d i denotes expected value for that output and k denotes
number of outputs. This is standard error function [4] subjected to normalization, i.e. divided by number of
outputs. If normalization isn't performed, the error function tends to achieve values proportional to signal length.
This is disadvantageous and must be corrected by decreasing learning step η.

Knowledge of network weights after completed learning process allows to calculate coefficients of
linear filter realized by network. Algorithm is following:

1. Starting from even-numbered input, choose 2n successive inputs, where n denotes number of layers.
2. Choose network output dependent on all selected inputs. Depending on chosen output, calculated

coefficients will define low-pass or high-pass filter.
3. Treating network as a directed graph, for each selected input i determine all paths connecting this input

with selected output.
4. For each path determined in point 3 calculate the product of all weights by which the signal following

this path is multiplied during forward propagation.
5. Sum products determined in point 4. Calculated value defines the i-th coefficient of the filter.

It will be demonstrated, that during teaching process weights converge to such values, that they
reconstruct existing Daubechies filters.

3. Experimental validation
Proposed neural network was implemented to verify it's abilities and performance. Existing wavelet transforms –
Daubechies 4, 6 and 8 - were chosen for experiments. They were realized by two–, three– and four–layer
networks.

Training set consisted of 1000 randomly generated signals and their transforms calculated using known
Daubechies wavelet filter coefficients. Signals were 16-element vectors with each component chosen randomly
from range [-1, 1]. Testing was carried out on different data set generated in the same way. Both training and
testing data were generated with eight digit precision. Learning process was terminated after reaching error less
than 10-10. Assuming smaller error would be pointless, due to selected precision of teaching data. Network's
initial weights were chosen randomly from range [-1, 1].

Tables 1, 2 and 3 show weights obtained in the learning process. Tables 4, 5 and 6 present coefficients
of filters learned by the network compared with expected values, i.e. coefficients of low–pass Daubechies filters.

Figure 1: a) Basic structural element of network b) Structure realizing 6-tap wavelet transform

Values are given with four-digit precision, however they were calculated with eight-digit precision, which allows
to calculate error with the same precision. Figure 2 shows, in logarithmic scale, changes of error during learning
process. Table 7 shows number of teaching patterns presented to the network before it learned the transform i.e.
reached error value below 10-10, as well as values of normalized mean square error obtained on the testing set.
From this table we can see, that learning time increases with number of layers. In all three test cases the network
managed to learn given transform with the desired precision.

Network
layer

Weights

w11 w12 w21 w22

1 0.8072 -0.4660 0.4985 0.8636

2 0.9686 0.2776 -0.2595 1.0363

Table 1: Network's weights after learning of
Daubechies 4 transform

Network
layer

Weights

w11 w12 w21 w22

1 0.9386 -0.3870 -0.3300 -0.8005

2 -0.5112 -0.7983 0.9633 -0.4486

3 -1.0462 0.1140 -0.1107 -1.0766

Table 2: Network's weights after learning of
Daubechies 6 transform

Network
layer

Weights

w11 w12 w21 w22

1 -1.1104 -1.1104 -0.3802 -1.1800

2 0.6622 -0.8678 0.9396 0.8096

3 0.1651 -0.7327 0.8062 0.2405

4 -0.7996 -0.0465 0.0367 -1.0122

Table 3: Network's weights after learning of
Daubechies 8 transform

Filter coefficients

h0 h1 h2 h3

actual 0.4829 0.8365 0.2241 -0.1294

learned 0.4829 0.8365 0.2241 -0.1294

error [·10-4] 0.0550 0.0497 -0.1258 0.0609

Table 4: Daubechies 4 low-pass filter coefficients

Filter coefficients

h0 h1 h2 h3 h4 h5

actual 0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352

learned 0.3326 0.8069 0.4598 -0.1350 -0.0854 0.0352

error [·10-4] -0.1215 -0.1248 -0.0483 0.0423 0.0994 -0.0602

Table 5: Daubechies 6 low-pass filter coefficients

Filter coefficients

h0 h1 h2 h3 h4 h5 h6 h7

actual 0.2304 0.7148 0.6309 -0.0280 -0.1870 0.0308 0.0329 -0.0106

learned 0.2303 0.7148 0.6308 -0.0279 -0.1870 0.0308 0.0328 -0.0106

error [·10-4] 0.1091 -0.0183 0.1347 0.0078 0.0864 -0.0038 -0.0776 0.0335

Table 6: Daubechies 8 low-pass filter coefficients

Transform
No. of presented
teaching patterns

Mean square error

minimal average

Daubechies 4 27 1.2488 · 10-11 6.9721 · 10-11

Daubechies 6 36 2.0228 · 10-11 1.4539 · 10-10

Daubechies 8 80 3.6894 · 10-11 1.7562 · 10-10

Table 7: Learning time and result obtained on testing set

Figure 2: Error value during learning of Daubechies 4, 6 and 8 transforms

4. Conclusion
Experimental validation proved the ability of proposed neural network to learn given wavelet transforms
belonging to Daubechies family. It was shown that with given signals and their transforms, network is able to
recreate orthogonal filter bank coefficients used to perform wavelet transform. Obtained learning speeds show
convergence of learning process in small number of iterations.

Obtained results are promising and allow to suspect, that proposed structure possesses potential ability
to synthesize new orthogonal wavelet transforms, that would allow more effective processing of signals. More
research should be carried out to precisely determine the network's abilities in this scope.

References
[1] Jan T. Białasiewicz. Falki i aproksymacje. WNT, 2000.
[2] Michał Jacymirski, Piotr Szczepaniak. Neural realization of fast linear filters. 4th
EURASIP-IEEE Region 8 International Symposium on Video/Image Processing and
Multimedia Communications, pages 153–157, 2002.
[3] Stanisław Osowski. Signal flow graphs and neural networks. Biological Cybernetics,
70(4): 387–395, February 1994.
[4] Stanisław Osowski. Sieci neuronowe do przetwarzania informacji. Oficyna
Wydawnicza Politechniki Warszawskiej, wydanie drugie, 2006.
[5] Stanisław Osowski, Andrzej Cichocki. Application of SFG in learning algorithms of
neural networks. International Workshop on Neural Networks for Identification, Control,
Robotics, and Signal/Image Processing, pages 75–83, August 1996.
[6] Bartłomiej Stasiak, Mykhaylo Yatsymirskyy. Fast Orthogonal Neural Networks.
Lecture Notes in Computer Science, 4029:142–149, July 2006.
[7] James S. Walker. A primer on wavelets and their scientific applications. Chapman &
Hall/CRC, 2nd edition, 2008.
[8] Mykhaylo Yatsymirskyy. Synteza przekształceń falkowych dla mobilnych systemów e-
gospodarki. Monografia : Wybrane problemy elektronicznej gospodarki, pages 273–281.
2008.
[9] Mykhaylo Yatsymirskyy. Struktury jednolite do syntezy przekształceń falkowych, in
printing.

