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1. Introduction
Wavelet transforms play an important role in processing, compression and analysis of signals [1, 7, 8]. Wavelet  
transform is linear, similarly to DFT, DCT, DST and DHT. However it uses different basis functions. Wavelet 
functions, unlike sinusoidal functions used by other mentioned transforms, are precisely located in time domain, 
thus allowing to obtain detailed information about local characteristics of a signal. However, there is no single 
basis function for all wavelet transforms. Many wavelet families are known. It is important, that chosen wavelet 
family  closely  corresponds  to  characteristics  of  analysed  signal.  One  of  the  most  frequently used  wavelet 
functions are the Daubechies wavelets, especially the simplest Daubechies 4 that allows efficient implementation 
and straightforward interpretation of results. Thanks to their properties, Daubechies wavelets are well suited for 
processing natural signals. However, it is possible to synthesize wavelet function more suitable for particular  
task  using  adaptive  methods  [1,  8].  Neural  networks  offer  the  possibility  to  adaptively synthesize  wavelet 
functions. Especially promising are the fast multilayer linear neural networks that are able to realize wide class  
of linear transforms [2, 6].

This paper presents analysis of new approach to wavelet synthesis, based on lattice structure proposed 
in [9]. Main goal is practical verification of this approach, by showing that neural network based on proposed 
lattice structure is able to learn existing Daubechies wavelet transforms.

2. Lattice structure
Lattice structure for realization of wavelet transforms was proposed in [9]. Basic element of neural network  
based on this structure is presented in Fig. 1a. This element (further referred to as the “neuron”) has two inputs, 
two outputs and four different weights. Therefore it can be treated as two independent ordinary linear neurons,  
with two inputs and one output each. Operation performed by this element can be treated as a 2-by-2 matrix  
multiplication:

[ y1

y2
]=P⋅[ x1

x2
] , where P=[ w11 w12

w21 w22
] .  (1)

Network architecture is presented in Fig.  1b. Weights of all neurons within one layer are identical.  
Neurons on the edge of a layer are wrapped around, which is equivalent to assuming that transformed signal is 
periodic. Neurons in the network are sparsely connected, i.e. the number of connections between layers is small,  
unlike the multilayer perceptron, where neurons in adjacent layers are connected all-to-all.

Network's ability to perform particular wavelet transform depends on number of layers. In case of three-
layer  network in Fig.  1b, each output depends on six inputs,  which means that  this network is suitable for  
realization of 6-tap transform. In general, to calculate m-tap transform, m / 2 layers are necessary. Network  
shown in Fig. 1b has eight inputs and eight outputs, however it doesn't mean that it is capable of processing only 
eight-element signals. Actual implementation of network allows to operate on any signal of even length. It is 
possible thanks to identical weights of neurons in one layer.

Same network can be used for calculating the inverse transform. To achieve this, network direction 
should be reversed (inputs become outputs) and weight matrices, denoted in Equation 1 as P, should be replaced  
with inverse matrices:

[ x 1

x 2
]=P−1

⋅[ y1

y2
] , where P=[ w11 w12

w21 w22
] . (2)

Network was taught using backpropagation algorithm based on signal flow graph method [3, 5], which 



allowed for straightforward gradient calculation of error function in respect to weights. Weights modification  
was performed according to steepest descent algorithm [4]:

wn1=wn− ∇ E w  ,  (3)
where wn is weights vector in n-th iteration,  η is the learning step and  ∇ E w  is error function gradient 
calculated in respect to network weights.

Supervised teaching was used to teach the network – for each input signal expected output was known.  
Error function minimized during learning process is:

E=∑
i=0

k −1  yi−d i
2

k
,  (4)

where yi denotes signal value on i-th output of network, d i denotes expected value for that output and k denotes 
number of outputs. This is standard error function [4] subjected to normalization, i.e. divided by number of  
outputs. If normalization isn't performed, the error function tends to achieve values proportional to signal length. 
This is disadvantageous and must be corrected by decreasing learning step η.

Knowledge of  network weights  after  completed learning process allows to calculate coefficients of 
linear filter realized by network. Algorithm is following:

1. Starting from even-numbered input, choose 2n successive inputs, where n denotes number of layers.
2. Choose  network  output  dependent  on  all  selected  inputs.  Depending  on  chosen  output,  calculated 

coefficients will define low-pass or high-pass filter.
3. Treating network as a directed graph, for each selected input i determine all paths connecting this input 

with selected output.
4. For each path determined in point 3 calculate the product of all weights by which the signal following 

this path is multiplied during forward propagation.
5. Sum products determined in point 4. Calculated value defines the i-th coefficient of the filter.

It  will  be  demonstrated,  that  during  teaching  process  weights  converge  to  such  values,  that  they 
reconstruct existing Daubechies filters.

3. Experimental validation
Proposed neural network was implemented to verify it's abilities and performance. Existing wavelet transforms – 
Daubechies  4,  6  and 8 -  were chosen for  experiments.  They were realized by two–, three– and four–layer  
networks. 

Training set consisted of 1000 randomly generated signals and their transforms calculated using known 
Daubechies wavelet filter coefficients. Signals were 16-element vectors with each component chosen randomly 
from range [-1, 1]. Testing was carried out on different data set generated in the same way. Both training and 
testing data were generated with eight digit precision. Learning process was terminated after reaching error less 
than 10-10.  Assuming smaller error would be pointless, due to selected precision of teaching data.  Network's 
initial weights were chosen randomly from range [-1, 1]. 

Tables 1, 2 and 3 show weights obtained in the learning process. Tables 4, 5 and 6 present coefficients 
of filters learned by the network compared with expected values, i.e. coefficients of low–pass Daubechies filters.  

Figure 1: a) Basic structural element of network b) Structure realizing 6-tap wavelet transform



Values are given with four-digit precision, however they were calculated with eight-digit precision, which allows 
to calculate error with the same precision. Figure 2 shows, in logarithmic scale, changes of error during learning 
process. Table 7 shows number of teaching patterns presented to the network before it learned the transform i.e.  
reached error value below 10-10, as well as values of normalized mean square error obtained on the testing set.  
From this table we can see, that learning time increases with number of layers. In all three test cases the network  
managed to learn given transform with the desired precision.

Network 
layer

Weights

w11 w12 w21 w22

1 0.8072 -0.4660 0.4985 0.8636

2 0.9686 0.2776 -0.2595 1.0363

Table 1: Network's weights after learning of  
Daubechies 4 transform

Network 
layer

Weights

w11 w12 w21 w22

1 0.9386 -0.3870 -0.3300 -0.8005

2 -0.5112 -0.7983 0.9633 -0.4486

3 -1.0462 0.1140 -0.1107 -1.0766

Table 2: Network's weights after learning of  
Daubechies 6 transform

Network 
layer

Weights

w11 w12 w21 w22

1 -1.1104 -1.1104 -0.3802 -1.1800

2 0.6622 -0.8678 0.9396 0.8096

3 0.1651 -0.7327 0.8062 0.2405

4 -0.7996 -0.0465 0.0367 -1.0122

Table 3: Network's weights after learning of  
Daubechies 8 transform

Filter coefficients

h0 h1 h2 h3

actual 0.4829 0.8365 0.2241 -0.1294

learned 0.4829 0.8365 0.2241 -0.1294

error [·10-4] 0.0550 0.0497 -0.1258 0.0609

Table 4: Daubechies 4 low-pass filter coefficients 

Filter coefficients

h0 h1 h2 h3 h4 h5

actual 0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352

learned 0.3326 0.8069 0.4598 -0.1350 -0.0854 0.0352

error [·10-4] -0.1215 -0.1248 -0.0483 0.0423 0.0994 -0.0602

Table 5: Daubechies 6 low-pass filter coefficients

Filter coefficients

h0 h1 h2 h3 h4 h5 h6 h7

actual 0.2304 0.7148 0.6309 -0.0280 -0.1870 0.0308 0.0329 -0.0106

learned 0.2303 0.7148 0.6308 -0.0279 -0.1870 0.0308 0.0328 -0.0106

error [·10-4] 0.1091 -0.0183 0.1347 0.0078 0.0864 -0.0038 -0.0776 0.0335

Table 6: Daubechies 8 low-pass filter coefficients

Transform
No. of presented 
teaching patterns

Mean square error

minimal average

Daubechies 4 27 1.2488 · 10-11 6.9721 · 10-11

Daubechies 6 36 2.0228 · 10-11 1.4539 · 10-10

Daubechies 8 80 3.6894 · 10-11 1.7562 · 10-10

Table 7: Learning time and result obtained on testing set



Figure 2: Error value during learning of Daubechies 4, 6 and 8 transforms

4. Conclusion
Experimental  validation  proved  the  ability  of  proposed  neural  network  to  learn  given  wavelet  transforms 
belonging to Daubechies family. It was shown that with given signals and their transforms, network is able to 
recreate orthogonal filter bank coefficients used to perform wavelet transform. Obtained learning speeds show 
convergence of learning process in small number of iterations.

Obtained results are promising and allow to suspect, that proposed structure possesses potential ability 
to synthesize new orthogonal wavelet transforms, that would allow more effective processing of signals. More 
research should be carried out to precisely determine the network's abilities in this scope.

References
[1] Jan T. Białasiewicz. Falki i aproksymacje. WNT, 2000.
[2] Michał Jacymirski, Piotr Szczepaniak.  Neural realization of fast  linear filters.  4th 
EURASIP-IEEE  Region  8  International  Symposium on  Video/Image  Processing  and 
Multimedia Communications, pages 153–157, 2002.
[3] Stanisław Osowski. Signal flow graphs and neural networks. Biological Cybernetics, 
70(4): 387–395, February 1994.
[4]  Stanisław  Osowski.  Sieci  neuronowe  do  przetwarzania  informacji.  Oficyna 
Wydawnicza Politechniki Warszawskiej, wydanie drugie, 2006.
[5] Stanisław Osowski, Andrzej Cichocki. Application of SFG in learning algorithms of  
neural networks. International Workshop on Neural Networks for Identification, Control, 
Robotics, and Signal/Image Processing, pages 75–83, August 1996.
[6]  Bartłomiej  Stasiak,  Mykhaylo  Yatsymirskyy.  Fast  Orthogonal  Neural  Networks. 
Lecture Notes in Computer Science, 4029:142–149, July 2006.
[7] James S. Walker. A primer on wavelets and their scientific applications. Chapman & 
Hall/CRC, 2nd edition, 2008.
[8] Mykhaylo Yatsymirskyy. Synteza przekształceń falkowych dla mobilnych systemów e-
gospodarki. Monografia : Wybrane problemy elektronicznej gospodarki, pages 273–281. 
2008.
[9] Mykhaylo Yatsymirskyy.  Struktury jednolite do syntezy przekształceń falkowych, in 
printing.


