
A Modular, Practical Test for a Programming Course
Jan Stolarek

jan.stolarek@ed.ac.uk
University of Edinburgh

Edinburgh, UK
Institute of Information Technology

Lodz University of Technology
Lodz, Poland

Przemyslaw Nowak
przemyslaw.nowak@p.lodz.pl

Institute of Information Technology
Lodz University of Technology

Lodz, Poland

ABSTRACT
In order to evaluate students’ programming skills during a univer-
sity course, a practical programming test can be administered, in
which students are required to implement a short yet complete
program according to a provided specification. However, such tests
often suffer from drawbacks that prevent comprehensive and ac-
curate assessment of students’ abilities. In this paper we identify
these drawbacks and then present a modular, practical test that
avoids common testing pitfalls, as well as show how to design
such a test based on course learning outcomes. A key aspect of our
approach is adoption of modularity, which ensures independent
and comprehensive verification of learning outcomes. We have
used our method to evaluate object-oriented programming skills
of undergraduate students over several years and have found that
our testing approach has proven its validity and superiority over
approaches employed previously.

CCS CONCEPTS
• Social and professional topics→ Student assessment.

KEYWORDS
practical skills testing, learning outcomes, student assessment

ACM Reference Format:
Jan Stolarek and Przemyslaw Nowak. 2020. A Modular, Practical Test for a
Programming Course. In The 51st ACM Technical Symposium on Computer
Science Education (SIGCSE ’20), March 11–14, 2020, Portland, OR, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366886

1 INTRODUCTION
Verification of learning outcomes upon completion of a course is
an important element of the educational process. In many courses
students acquire not only theoretical knowledge, but also practical
skills, and in such cases both components need to be evaluated. This
is especially true for courses that teach programming as they aim
not only to convey knowledge related to the underlying concepts,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366886

but also to equip students with practical abilities that allow them
to develop computer programs.

Comprehensive and accurate assessment of practical program-
ming skills is not a trivial matter. Common approaches in the lit-
erature include students being asked to read a piece of code and
describe what it does or write a missing fragment of code them-
selves to perform a certain task [4, 5, 7, 8]. By their nature, such
methods are rather fragmentary. They usually work well only when
testing in isolation the understanding of fundamental programming
concepts. When integration of multiple skills must be assessed, stu-
dents can be required to implement a short yet complete program
according to a provided specification, as was done in the famous
McCracken study [9]. This is a popular approach, but in practice it
is often adopted in ways that hinder accurate assessment. One com-
mon pitfall are practical tests composed of subtasks that altogether
form the specification of a program, but these subtasks are not
independent and build progressively one on top of another. Con-
sequently, students who fail to complete an intermediate subtask
are prevented from working on further subtasks, even if they have
necessary skills to cope with them. On the other hand, the opposite
can also be bad: practical tests in which requirements for lower
and higher grades are completely independent from one another
may lead to situations when students fulfill requirements for higher
grades without satisfying requirements for lower grades, which
in turn raises a question how such solutions should be graded. A
common approach in these circumstances is to enforce a rule that
awarding a higher grade is possible only provided that all require-
ments for lower grades are satisfied. However, the downside of this
approach is that students who have acquired advanced skills but are
lacking one particular basic skill necessary to complete an interme-
diate requirement are doomed to a low grade. Finally, some practical
tests exhibit a monolithic, all-or-none structure: the specification
of the program to be developed is not separated into well-defined,
self-contained subtasks. In such tests it is often not clear which
skills are being tested and what the exact grading criteria are. In
conclusion, all those tests described above prove inadequate: they
do not provide an accurate and comprehensive assessment of skills
acquired during a programming course and often leave students
with a feeling of being graded unfairly.

We have seen these kinds of faulty tests being administered by
many of our colleagues, and also by our own teachers when we
were students. Moreover, we ourselves have used such tests and
were disappointed and puzzled to see that they do not provide ac-
curate assessment of our students’ programming skills. Over the
years, however, we came to realize the deficiencies of our tests and
came up with an alternative structure. Specifically, we developed

https://doi.org/10.1145/3328778.3366886
https://doi.org/10.1145/3328778.3366886

a modular test, whose fundamental assumption is that it should
enforce demonstration of some minimum of students’ knowledge
and skills required to participate in follow-up courses on subse-
quent semesters, but then it should assess more advanced concepts
and skills independently from one another. This modularity allows
students who have only mastered fragments of the course mate-
rial to fully demonstrate their knowledge and skills without being
blocked by things they do not know. Over several years we have
refined the test structure, arriving at a test that not only accurately
evaluates students’ programming skills, but is also considered fair
by the students themselves.

2 COURSE STRUCTURE AND CONTEXT
We have developed and administered our test in the context of
an “Object-Oriented Programming” course taught during the third
semester of the undergraduate program in computer science. By
that time students have completed a course that teaches them the
basics of programming in C++ and should thus be familiar with
concepts like variables, control-flow, arrays, structures, pointers,
dynamic memory, and I/O.

The “Object-Oriented Programming” course lasts for 15 weeks
and consists of one 90-minute lecture and one 90-minute laboratory
session per week. The learning outcomes of the course are defined
as follows:

(1) Name, compare, and shortly characterize different program-
ming paradigms.

(2) Explain the idea and basic concepts of the object-oriented
programming (OOP) paradigm and compare it with other
programming paradigms.

(3) Discuss the basic notation of Unified Modeling Language
(UML) class diagrams.

(4) Create language-independent architectural designs of object-
oriented programs using UML class diagrams.

(5) List mechanisms supporting the object-oriented program-
ming paradigm in different programming languages and
discuss them in detail in the case of C++ language.

(6) Create object-oriented programs using C++ language, which
are based on architectural designs prepared earlier.

(7) Use object-oriented elements of the C++ Standard Library as
well as use existing and create new libraries in this language.

(8) Discuss possible variants of projects of object-oriented pro-
grams as well as possible ways of their implementation using
C++ language and justify the adopted solutions.

According to Bloom’s taxonomy [3] learning outcomes (1), (2), (3),
and (5) fall into knowledge category; outcomes (1), (2), and (5) addi-
tionally include comprehension; outcome (6) is application; outcomes
(4) and (7) are synthesis; and finally outcome (8) is analysis. It is
worth noting that most of the above outcomes fall into lower cate-
gories of Bloom’s taxonomy. This is because the course is taught in
a relatively early semester (the whole undergraduate program spans
seven semesters) and the level of reasoning autonomy required of
students is not yet as high as it will be later. Outcomes (1)–(3) and
(5) are assessed as part of a lecture exam, while outcomes (4), (6)–(8)
are assessed during laboratory sessions. In the rest of this paper we
restrict our attention to the laboratory sessions.

Laboratory sessions are divided into two parts. The first four
weeks consist of workshops that follow the worked-out examples
approach [10]. During the workshops students work in pairs to
develop a small programming project designed and supervised by
Teaching Assistants (TAs). The goal of workshops is to reinforce
basic object-oriented concepts introduced during the lectures, give
students a basic taste of the “design first, then implement” approach
to software development, and teach the basics of program decompo-
sition [6]. These skills are then further developed in the remaining
weeks of the semester, when students work on their own object-
oriented application, as they first prepare its architectural design,
and then, once the design is accepted by a TA, proceed with the
implementation.

3 A PRACTICAL LABORATORY TEST
Both the workshops and the application development described in
Section 2 are done in pairs. The workshops are not graded, although
students receive feedback about their solutions. The applications
are graded because their development is directly linked to learning
outcomes (4), (6)–(8), which require assessment. However, since
students work on their applications mostly at home, it is hard to
ensure that they actually work independently from other groups.
Moreover, for some student pairs it proves difficult to judge each
student’s individual contribution. Therefore, a separate means of
evaluating every student individually and under direct supervision
is needed. This is attained by administering a practical test, which
verifies learning outcomes (6) and (7) on an individual basis. Passing
the test is mandatory to complete the course.

3.1 Test assumptions and goals
The basic assumption underlying our test is that in order to verify
learning outcomes (6) and (7) students should be able to demonstrate
OOP skills comparable with those acquired during the workshops
and combine them with what they already learned about C++ in
the previous semesters. Therefore, we expect students to at least
be able to perform the following tasks:
(i) create classes and inheritance structure according to an UML

class diagram;
(ii) properly initialize objects using constructors;
(iii) implement methods to read and modify fields of an object or

perform other simple operations on it;
(iv) call methods of an object, both directly and via pointers – this

includes calling virtual methods in derived classes via pointer
to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Tem-
plate Library (STL) collections, like vectors or queues;

(vi) incorporate what they already know about C++ from the pre-
vious semesters (e.g., handling of streams, random number
generation, use of unions, enumerations, etc.) into their object-
oriented programs.

These are the basic technical requirements that every student
should meet to be able to participate in courses in subsequent
semesters. If a student cannot demonstrate knowledge of this mate-
rial, they should not pass the test and consequently fail the course.
Regarding the last bullet, it is not our intention to catch students
completely off-guard by requesting them to recall something that

might have been only briefly mentioned in one of the previous
semesters. We thus often narrow down the scope of the additional
material they should remember from the previous semesters and
inform them about it a week before the test.

We certainly wish that students have more than just the basic
skills and therefore build more advanced requirements on top of
the basic ones. To obtain a higher grade, students must know how
to:

(vii) use static class components;
(viii) properly allocate and de-allocate memory via pointers (includ-

ing virtual destructors if necessary);
(ix) extend the program with new methods not shown in an UML

class diagram, based only onwritten description of their behav-
ior, which requires devising proper arguments, return types,
and visibility modifiers for the new methods. (In more ad-
vanced courses on programming it might be desirable to ask
students to make some sort of design decisions, but we refrain
from that in this introductory OOP course.)

Students take the test individually on laboratory Windows ma-
chines using the GCC compiler and the CodeBlocks integrated
programming environment. During the test students are prohibited
from using any automated tools that translate UML to code because
that would defeat the purpose of our test. We require that before
turning to automated tools students have a solid understanding of
what is being automated.

An average correct solution has approximately 80–100 lines of
C++ code with additional 50–80 lines in header files. A project
stub with empty source files and a makefile can also be provided, if
desired. The exact time limit can be adjusted to match a specific task
given in the test. For us this is typically between 45 to 75 minutes.
The time limit is not very generous, forcing students to demonstrate
a fair amount of proficiency in developing a solution. After the time
limit has passed, students are required to submit their solution for
evaluation to our university’s online learning platform.

3.2 The test
Below we present an example test created using our approach. In
Section 4 we discuss its structure and how it fulfills requirements
described in Section 3.1.

Your task is to implement a fragment of a system for managing a
TODO list. Your program will store a list of tasks to do and display
that list on the screen. See Figure 1 for a class diagram.

Specification:

A. Create class structure, fields, and methods shown in Figure 1.
Each class should be placed in a separate header file. Source
files with .cpp extension corresponding to header files should be
created in subsequent subtasks whenever necessary. (3 points)

B1. Every Task contains four fields shown in the class diagram.
Implement get and setmethods for all the fields except the id
field, which should be initialized with an argument passed to a
constructor. Once the id field has been initialized, it cannot be
changed, but it can be read with the get method. We simplify
the program by assuming that due and priority fields are
of type string. (1 point)

C. Implement four classes for creating a string representation
of each component of a task. These classes should implement
the toString method inherited from the abstract base class
Column. For example: the toString method in
PriorityColumn class takes a Task object pointer as an argu-
ment and returns a string representation of this task’s priority
(“low”, “normal”, “high”). (2 points)

D1. Implement ColumnFormatter class for creating a string rep-
resentation of a task:

(1) The constructor of ColumnFormatter should create an STL
vector that contains instances of all four classes inheriting
from the Column base class (each column should appear only
once, so the collection will have four elements). (1 point)

(2) The taskToString method creates a string representation
of a Task. It iterates over the columns collection to create a
description of each column for a task passed as an argument.
The description is returned as a single-line string. Columns
should be separated with a vertical bar surrounded by spaces.
(2 points)

E. Create a main function with three tasks hardcoded:
(1) “Take out the trash”, due: 27-08-2018, priority: low
(2) “Return books to the library”, due: 1-09-2018, priority: nor-

mal
(3) “Pay the bills”, due: 31-08-2018, priority: high
Place these tasks in an STL vector. Iterate over the collection
of tasks and display the data of all the tasks, one task per line us-
ing the taskToStringmethod provided by ColumnFormatter
class (you will need an instance of this class). (2 points)

B2. (extends B1) Task class contains additional task_no pri-
vate static field of type int used to assign unique identifiers
to tasks. The Task class constructor no longer takes id as an
argument. It uses the task_no static field instead, increment-
ing it after each use. With this approach subsequently created
tasks receive unique IDs. Initialize the static field in a way that
ensures tasks will be numbered from 1. (2 point)

D2. (extends D1) The destructor of ColumnFormatter deallo-
catesmemory allocated by the constructor to objects in columns
collection and clears the collection. This means that columns
collection has to store pointers to objects inheriting from Column.
(2 points)

D3. (extends D1) The Column class contains additional
columnName abstract method for returning a string name of
a given column (“ID”, “Description”, “Priority”, “Due”). The
ColumnFormatter column contains additional
columnHeaders method that creates a header for the task
table. The header is created by calling columnName method
for subsequent elements in the columns collection, separating
names of columns with a vertical bar surrounded by spaces.
The resulting string is returned as the result and displayed in
the main function before displaying the tasks. (3 points)

3.3 Grading scale
The grading scale, as mandated by legislation in our country, com-
prises six grades: 2 (lowest), 3, 3.5, 4, 4.5, and 5 (highest). To pass a
test a student needs to receive at least a 3. An unwritten convention
at our university is that passing any test or exam requires obtaining
at least 60% of all possible points. In our example test this means

Figure 1: Class diagram for the test. Implementing some of the test requirements might necessitate slight modifications to the
diagram.

scoring 11 points out of total 18 possible. Thus we grade the test
using the following scale:

• 17–18 points – 5
• 16 points – 4.5
• 14–15 points – 4
• 13 points – 3.5
• 11–12 points – 3
• 0–10 points – 2 (fail)

A relatively small number of total points leaves little room for
variation here. Importantly, we recognize that even the best students
should be allowed to make mistakes and thus the highest grade can
be obtained without accumulating all the points.

Students’ solutions are graded by a TA, who first ensures that
a solution compiles and, if it does, inspects the source code to
verify which of the requirements have been satisfied. Each student
receives a detailed breakdown of awarded points with a feedback
comment where necessary. We have found that grading a solution
takes around 3-4 minutes on average, so grading a group of 15
students, which is an approximate number of students assigned to
a TA for a single laboratory session, should take no longer than an
hour. Having multiple groups of students will of course multiply
that time, which might limit the applicability of our approach if
TAs are assigned too many groups. Students do not have any design
freedom when implementing their solutions, so all solutions should
have identical code structure and differ only in irrelevant details
like loop variable names (and mistakes!). We do not rely on any
automated grading tools. Solutions that do not compile receive the
lowest, fail grade.

4 MODULARITY
In Section 3.1 we outlined seven basic requirements that students
completing the course should meet. These are tested by the first
five subtasks in our test:

• basic requirement (i) is tested by subtask A;
• basic requirement (ii) is tested by B1 and D1 bullet (1);
• basic requirement (iii) is tested by B1, C, and D3;

• basic requirements (iv) is tested by D1 bullet (2), E, and D3;
• basic requirements (v) is tested by D1 bullet (1), E, D2, and
D3;

• basic requirements (vi) is tested by D1 bullet (2), E, and D3.

It is crucial that all possible combinations of subtasks that grant
enough points to receive at least grade 3 test all the basic require-
ments (i)–(vi). In particular, implementing requirements A, B1, C,
D1, and E gives students a total of 11 points, which is exactly what
suffices to pass the test. But that is not the only possible way to
obtain the required number of points. A student might, for example,
solve tasks A, D1, D2, and D3 to obtain exactly 11 points. This is
fine since these subtasks test all the requirements (i)–(vi) and so
the student has proven that she has mastered the required material.
Note that this makes requirement E optional and so it is possible
for a student to pass the test by delivering a program that does not
run. This might seem surprising at first but this is exactly what we
wanted to achieve in our approach. All that matters is verifying the
required learning outcomes, and that our test ensures.

Requirements B2, D2, and D3 build on top of the basic ones in
a modular way to test knowledge of the extended requirements:

• B2 extends B1, requiring students to demonstrate knowl-
edge of static class fields by modifying behavior of the Task
constructor – this tests requirement (vii) from Section 3.1;

• D2 extends D1 by requiring students to demonstrate knowl-
edge of C++ memory management – this tests requirement
(viii);

• D3 extends D1, requiring students to create new methods
based on their written description – this tests requirement
(ix).

As we can see, basic requirements (ii)–(vi) formulated in Sec-
tion 3.1 are tested independently from one another, whereas ad-
vanced requirements (vii)–(ix) are built on top of these basic re-
quirements, yet remain independent from one another as well. So if
a student does not know how to fulfill one of the basic requirements,
she can still demonstrate knowledge of the remaining ones.

4.1 Creating new tests
Once a single test is prepared following the approach described
above, it can be easily altered to produce new tests that can be used
with different student groups or during different academic years.
For example, we have modified the example test from Section 3.2 to
a version that stores a list of books in a library, with title, return date,
and status (“available”, “on loan”) as book attributes. These two tests
follow exactly the same class structure with only names of classes,
fields, and methods being different. Other test topics we have used
over the years include a bank/money exchange, anthill/beehive
and warehouse/binder (with boxes/paper sheets being stored inside
larger containers), among others.

5 VALIDITY ASSESSMENT
We now turn to addressing validity of our approach. We follow
the notion of a validated assessment as introduced by Tew and
Guzdial [11, 12], which in turn was adapted from the standard
educational test development guidelines [1].

The conceptual content of our test is derived directly from
the learning outcomes, as detailed in Section 2. This follows the
assessment-driven course design approach [2]. Our test ensures
that learning outcomes are being measured independently from
one another, and it cannot be passed without knowledge of the out-
comes deemed as mandatory. In Section 4 we analyzed this aspect
theoretically and in Section 6 we verify this via an empirical study.
Review of our test specification was carried out by colleague TAs
teaching the same course. This ensured content validity of our test.

Per our university regulations, each student is allowed to attempt
a test three times. Given that we usually taught up to two groups
of students in parallel, we had to prepare up to six different tests
each year. Over the three years when we carried out our research
we created six different test structures, with a total of fourteen
variations, as described in Section 4.1. These form our bank of test
questions.

Tew and Guzdial [11, 12] aim to assess comprehension of general
programming concepts and thus desire language independence of
their tests. This is achieved by using a pseudocode rather than an
existing programming language. This would not work in our setting
because we specifically want to test knowledge of a particular
programming language. We strongly believe that our approach
could easily be adapted to other programming languages, but we
have not yet carried out such an attempt.

We did not have pilot questions in a strict sense described in [11].
However, the act of refining our approach over the years, described
in Section 6, played exactly the same role, i.e., it provided us with
feedback on suitability of our questions and allowed necessary
revisions.

6 PRACTICAL ANALYSIS
In this section we focus specifically on establishing construct valid-
ity [12] and reliability of our test through an empirical study. We
have gathered data during three consecutive academic years. Each
year approximately 160-180 students took the OOP course. For the
purpose of laboratory sessions students are always divided into
smaller groups counting between 12 to 16 students. We applied our
testing approach in the student groups we were assigned to teach,

two such groups in each of the first two years and one group in the
third year, a total of 75 students.

Since the test covers material presented during the workshop
sessions in the first four weeks, we initially decided to have the
test in the sixth week of the course. (Not fifth, so that students
could receive feedback about their fourth-week assignment and
had enough time to digest it.) The assumption behind this was that
it would be better to have the test while the material remains fresh
in students’ memory. However, we observed that too many students
were struggling to even pass the test, and there were far too few
higher grades than we wished. In the first year, out of 23 students
taking a test after the workshop sessions, only 3 passed the test
successfully, whereas 10 students delivered solutions that even did
not compile. Things were equally bad during the second year, when
out of 24 students again only 3 passed the test and 10 delivered non-
compiling solutions. This was a clear indication that our approach
of organizing the test right after the workshops was not working
well. In the third year we thus decided to have the test at the end
of the course, after students have completed implementation of
their applications. Our conjecture was that, since the test requires
practical skills rather than memorization, it would actually be better
to give students more time to practice their new skills. Indeed, in
the third year on the first attempt 7 students out of 15 passed the
test and only 5 created non-compiling solutions. Out of 7 students
that passed the test 5 received grade 4.5, one received a 5 and one
a 3. This clearly shows that there was a group of students who
mastered the course subject and could demonstrate it on the first
attempt. This marks a significant improvement over the first two
years.

All students, including those that have already passed the test,
are allowed further approaches, which take place at the end of
the semester. During the first year, we had a total of 22 students
attempting a test for the second time: 14 of them passed the test
and only 3 delivered non-compiling solutions. In the second year,
16 students took the second attempt, with 5 of them passing and 6
delivering non-compiling solutions. After the second attempt many
students told us that the experience they gained during application
development in the second half of the semester helped them greatly
with the test, which was another indication that the test should be
administered at the end of the semester. In the third year, out of 9
students 3 passed the test and 5 delivered non-compiling solutions.
We have observed that out of students taking the third approach
about one fourth passes the test and over a third still cannot create
a solution that would compile. Although we acknowledge that with
such a small sample it is hard to draw definite conclusions, the
results obtained over the years show consistency, thus indicating
reliability of our testing approach.

The above statistics give a broad picture of how well the stu-
dents performed on a test. However, they do not answer the most
important questions about construct validity of our approach:

(1) Do students take advantage of test modularity? Do they skip
subtasks they do not know how to do and focus on the ones
they can?

(2) Does the test enforce the course learning outcomes? Do
students that pass it demonstrate the basic skills identified
in Section 3.1?

To answer these questions we inspected in detail over 120 test
solutions we received during these three years and carried out
informal interviews with the students.

The answer to question 1 above is that indeed students use the
modularity to their advantage. It is common that students skip some
of the subtasks and focus on implementing ones they know how to
do. Many students that receive lower grades like 3 or 3.5 do exactly
that, which was our intention. However, when we first introduced
this test structure, this was not always the case. To our disappoint-
ment some students would not realize that later subtasks in the
test are independent from earlier ones. Interviews with students
revealed that instead of skipping subtasks they did not know how
to implement, students would try to implement them nevertheless
and then ran out of time. This came as a very unpleasant surprise
because this was exactly what we wanted to avoid! To mitigate the
problem, we make it clear to students that it is correct, and in fact
expected, to skip those subtasks that they cannot implement and
focus on the ones they can. We include this information as part
of the written instruction attached to the test and remind about it
verbally about 30 minutes into the test, when many students have
likely already finished implementing the first five subtasks.We have
also altered numbering of subtasks. Originally we used consecutive
letters of the alphabet, but then decided to number subtasks in a
way that indicates dependencies between basic and extended ones.
This is already shown in Section 3.2. For example, we say that D3
builds on top of D1 but not on any of the previous subtasks. This
has brought significant improvement, although we acknowledge
that this is not fully accurate: technically it is possible to implement
subtask D3 without fully implementing D1 by creating a method
for displaying column names but not for displaying the tasks. (This
did not occur in any of solutions submitted by the students though.)

Regarding the question 2 above, we have found no cases where
a student would pass a test without fulfilling all the basic require-
ments. There were several cases where students gained some points
from extended requirements without satisfying all the basic ones
first but none of these cases resulted in student passing a test. This
is exactly what we wanted to see in our approach and also an impor-
tant argument in support of validity of our approach. However, we
have so far only carried out experiments in the context of a single
course at one teaching institution. Further research is required to
generalize our validity results beyond that context.

An important achievement of our approach is the students’ feel-
ing of being judged fairly. Interviews conducted with students show
that the ability to skip too difficult requirements prevents a feeling
of frustration. Students will typically comment on the requirements
they did not fulfill by saying “I didn’t know how to do it”, un-
derstanding that their failure comes from shortcomings in their
knowledge. This contrasts, for example, with results presented in
[9], where students who failed the test would attribute their failure
to external factors (e.g., “I didn’t have enough time”, “The problem
was too hard”).

One surprising element we have encountered from the very
beginning was partial fulfillment of requirements we considered
atomic. For example, in one of our tests we had an additional re-
quirement to implement field initialization in a constructor using
initializer lists in two classes and we received solutions where stu-
dents would implement them in one class only. On the one hand,

such solutions demonstrated that a student knew how an initializer
list works, but on the other hand the requirement was only par-
tially fulfilled. When we first encountered this situation our ad-hoc
solution was to award half-points and after summing all the points
round the remaining halves up in students’ favor. This turned out
to work well in practice, so we decided to maintain the approach
of admitting half-points and incorporated them into the grading
scale.

Another surprise was a high percentage of solutions that do not
compile. Errors in these solutions fall into several categories. First,
there are elementary C++ syntax errors, e.g., not knowing how
to write a loop. Second, there are semantic errors like forgetting
mandatory namespace qualifiers or not including necessary header
files. These kinds of errors show that some students do not possess
the skills they should have learned by completing the C++ course
offered in an earlier semester. Our initial thought was that per-
haps at our university testing students’ knowledge was not strict
enough, but we later came to realize that many other researchers
had observed similar phenomena – see [5, 7–9] for examples. The
third category of errors is related to new C++ object-oriented el-
ements introduced during the workshops. A common example is
omitting class name qualifier in a method definition, i.e., writing
void bar() {} instead of void Foo::bar() {}. We do not yet
have a method to decrease the number of these kinds of failures.

7 CONCLUSIONS
In this paper we have presented an approach to testing students’
programming skills in a modular way. We have used our approach
for several years and found that it works well in practice. We can
now comprehensively test practical skills acquired during labora-
tory sessions, allowing students to independently demonstrate the
pieces they have learned. Students no longer claim that the tests are
somehow “unfair” because they prevent them from showing their
full set of skills or focus only on a fragment of course material.

Our approach was not created instantly out of thin air. Rather it
is a product of constant refinement over the years. In the beginning,
we did not consciously realize the rules governing the creation of
our tests and only applied them instinctively. Only with time did
we realize that modularity, as described in Section 4, is the key to
creating a comprehensive and reliable practical test. In this process
we did not manage to avoid some pitfalls, which we described in
Section 6.

In this paper we have focused on an introductory object-oriented
programming course using the C++ language. Results presented
in Section 6 were gathered at a single institution over the period
of three years. Future work will focus on reproducing presented
results in a broader context. Our first steps will be to apply our
approach to a more advanced programming course with a differ-
ent programming language. Also, the process of creating tests is
currently based on expert knowledge and experience. In particular,
assigning points for the individual subtasks to match themodularity
criteria described in Section 4 might require trial and error. Devel-
oping a more precise approach to creating new tests and assigning
points remains as future work. Finally, it would be an interesting
experiment to test our students’ mental models of object-oriented
programming concepts in a fashion similar to [5] or [8].

ACKNOWLEDGMENTS
This work was supported by ERC Consolidator Grant Skye (grant
number 682315).

REFERENCES
[1] American Educational Research Association, American Psychological Associa-

tion, and National Council on Measurement in Education. 1999. Standards for
Educational and Psychological Testing. American Educational Research Associa-
tion.

[2] Joe Bergin, Christian Kohls, Christian Köppe, Yishay Mor, Michel Portier, Till
Schümmer, and Steven Warburton. 2015. Assessment-driven course design
foundational patterns. In Proceedings of the 20th European Conference on Pattern
Languages of Programs (EuroPLoP ’15). ACM, New York, NY, USA, Article 31,
13 pages. https://doi.org/10.1145/2855321.2855353

[3] Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walker H. Hill, and
David R. Krathwohl. 1956. Taxonomy of Educational Objectives. The Classification
of Educational Goals. Handbook 1: Cognitive Domain. Longmans Green, New
York.

[4] Richard Bornat, Saeed Dehnadi, and Simon. 2008. Mental models, consistency
and programming aptitude. In Proceedings of the Tenth Conference on Australasian
Computing Education - Volume 78 (ACE ’08). Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 53–61. http://dl.acm.org/citation.cfm?id=
1379249.1379253

[5] Marilyn Ford and Sven Venema. 2010. Assessing the success of an introductory
programming course. Journal of Information Technology Education 9 (2010),
133–145. https://doi.org/10.28945/1182

[6] Aaron Keen and Kurt Mammen. 2015. Program decomposition and complexity
in CS1. In Proceedings of the 46th ACM Technical Symposium on Computer Science

Education (SIGCSE ’15). ACM, New York, NY, USA, 48–53. https://doi.org/10.
1145/2676723.2677219

[7] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A multi-national study of reading
and tracing skills in novice programmers. SIGCSE Bull. 36, 4 (June 2004), 119–150.
https://doi.org/10.1145/1041624.1041673

[8] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. 2007. Investigating
the viability of mental models held by novice programmers. SIGCSE Bull. 39, 1
(March 2007), 499–503. https://doi.org/10.1145/1227504.1227481

[9] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. In Working Group Reports from ITiCSE
on Innovation and Technology in Computer Science Education (ITiCSE-WGR ’01).
ACM, New York, NY, USA, 125–180. https://doi.org/10.1145/572133.572137

[10] Lai Chee Sern, Kahirol Mohd Salleh, Nor lisa Sulaiman, Mimi Mohaffyza Mo-
hamad, and Jailani Md Yunos. 2014. The effects of worked example and problem
solving on learning performance and cognitive load. In 4th Shanghai International
Conference on Social Science. 131–143.

[11] Allison Elliott Tew and Mark Guzdial. 2010. Developing a validated assessment of
fundamental CS1 concepts. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (SIGCSE ’10). ACM, New York, NY, USA, 97–101.
https://doi.org/10.1145/1734263.1734297

[12] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: A language independent
assessment of CS1 knowledge. In Proceedings of the 42Nd ACM Technical Sym-
posium on Computer Science Education (SIGCSE ’11). ACM, New York, NY, USA,
111–116. https://doi.org/10.1145/1953163.1953200

https://doi.org/10.1145/2855321.2855353
http://dl.acm.org/citation.cfm?id=1379249.1379253
http://dl.acm.org/citation.cfm?id=1379249.1379253
https://doi.org/10.28945/1182
https://doi.org/10.1145/2676723.2677219
https://doi.org/10.1145/2676723.2677219
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1227504.1227481
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/1953163.1953200

	Abstract
	1 Introduction
	2 Course structure and context
	3 A practical laboratory test
	3.1 Test assumptions and goals
	3.2 The test
	3.3 Grading scale

	4 Modularity
	4.1 Creating new tests

	5 Validity assessment
	6 Practical analysis
	7 Conclusions
	Acknowledgments
	References

