
SIGCSE 2020

Portland, Oregon, USA

Jan Stolarek Przemys law Nowak

University of Edinburgh, UK

Lodz University of Technology, Poland

Lodz University of Technology, Poland

A Modular, Practical Test for a Programming Course

https://tinyurl.com/sto-now



Assessing students’ programming skills

https://tinyurl.com/sto-now

We want to teach students how to program



Assessing students’ programming skills

https://tinyurl.com/sto-now

We want to teach students how to program

...but how do we they learned the skill?



A typical approach

https://tinyurl.com/sto-now

Typical approach:

individual test in front of a computer

task: implement a program



Problems with assessment methods

https://tinyurl.com/sto-now

Sounds like the Right Thing, but in practice often implemented in a way
that hinders accurate assessment:

subtasks may not be independent

or the opposite: subtasks correspond to discrete grades, but are
independent

monolithic all-or-nothing tests with no clear grading structure



Problems with assessment methods

https://tinyurl.com/sto-now

Sounds like the Right Thing, but in practice often implemented in a way
that hinders accurate assessment:

subtasks may not be independent

or the opposite: subtasks correspond to discrete grades, but are
independent

monolithic all-or-nothing tests with no clear grading structure



Problems with assessment methods

https://tinyurl.com/sto-now

Sounds like the Right Thing, but in practice often implemented in a way
that hinders accurate assessment:

subtasks may not be independent

or the opposite: subtasks correspond to discrete grades, but are
independent

monolithic all-or-nothing tests with no clear grading structure



Problems with assessment methods

https://tinyurl.com/sto-now

Sounds like the Right Thing, but in practice often implemented in a way
that hinders accurate assessment:

subtasks may not be independent

or the opposite: subtasks correspond to discrete grades, but are
independent

monolithic all-or-nothing tests with no clear grading structure



Our solution

https://tinyurl.com/sto-now

A modular, practical programming test:

1 based on learning outcomes

2 enforces minimal requirements

3 skills assessed independently from one another



Our solution

https://tinyurl.com/sto-now

A modular, practical programming test:

1 based on learning outcomes

2 enforces minimal requirements

3 skills assessed independently from one another



Our solution

https://tinyurl.com/sto-now

A modular, practical programming test:

1 based on learning outcomes

2 enforces minimal requirements

3 skills assessed independently from one another



Our solution

https://tinyurl.com/sto-now

A modular, practical programming test:

1 based on learning outcomes

2 enforces minimal requirements

3 skills assessed independently from one another



Our solution

https://tinyurl.com/sto-now

A modular, practical programming test:

1 based on learning outcomes

2 enforces minimal requirements

3 skills assessed independently from one another

Result: accurate, comprehensive, and fair assessment of students’ skills



Disclaimer

https://tinyurl.com/sto-now

This is an experience report



Context and scope

https://tinyurl.com/sto-now

Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA



Context and scope

https://tinyurl.com/sto-now

Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA



Context and scope

https://tinyurl.com/sto-now

Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA



Context and scope

https://tinyurl.com/sto-now

Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA



Context and scope

https://tinyurl.com/sto-now

Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA



Context and scope

https://tinyurl.com/sto-now

Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA



Context and scope

https://tinyurl.com/sto-now

Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA



Learning outcomes

https://tinyurl.com/sto-now

Learning outcomes to be verified by the test:

Create object-oriented programs in C++ language based on a
provided design.

Use object-oriented elements of the C++ Standard Library.



Learning outcomes

https://tinyurl.com/sto-now

Learning outcomes to be verified by the test:

Create object-oriented programs in C++ language based on a
provided design.

Use object-oriented elements of the C++ Standard Library.



Learning outcomes

https://tinyurl.com/sto-now

Learning outcomes to be verified by the test:

Create object-oriented programs in C++ language based on a
provided design.

Use object-oriented elements of the C++ Standard Library.



Elaboration of learning outcomes: basic requirements

https://tinyurl.com/sto-now

First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.



Elaboration of learning outcomes: basic requirements

https://tinyurl.com/sto-now

First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.



Elaboration of learning outcomes: basic requirements

https://tinyurl.com/sto-now

First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.



Elaboration of learning outcomes: basic requirements

https://tinyurl.com/sto-now

First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.



Elaboration of learning outcomes: basic requirements

https://tinyurl.com/sto-now

First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.



Elaboration of learning outcomes: basic requirements

https://tinyurl.com/sto-now

First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.



Elaboration of learning outcomes: basic requirements

https://tinyurl.com/sto-now

First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.



Elaboration of learning outcomes: additional requirements

https://tinyurl.com/sto-now

In addition we wish that students:

(vii) use static class components;
(viii) properly allocate and de-allocate memory via pointers (including

virtual destructors if necessary);
(ix) extend the program with new methods not shown in an UML class

diagram, based only on written description of their behavior



Elaboration of learning outcomes: additional requirements

https://tinyurl.com/sto-now

In addition we wish that students:
(vii) use static class components;

(viii) properly allocate and de-allocate memory via pointers (including
virtual destructors if necessary);

(ix) extend the program with new methods not shown in an UML class
diagram, based only on written description of their behavior



Elaboration of learning outcomes: additional requirements

https://tinyurl.com/sto-now

In addition we wish that students:
(vii) use static class components;
(viii) properly allocate and de-allocate memory via pointers (including

virtual destructors if necessary);

(ix) extend the program with new methods not shown in an UML class
diagram, based only on written description of their behavior



Elaboration of learning outcomes: additional requirements

https://tinyurl.com/sto-now

In addition we wish that students:
(vii) use static class components;
(viii) properly allocate and de-allocate memory via pointers (including

virtual destructors if necessary);
(ix) extend the program with new methods not shown in an UML class

diagram, based only on written description of their behavior



Environment

https://tinyurl.com/sto-now

Test environment:

Windows + GCC + CodeBlocks

no tools that translate UML to code



Solutions

https://tinyurl.com/sto-now

Solution for a typical test:

1 80-100 LOC + 50-80 LOC in header files

2 45-75 minutes



Solutions

https://tinyurl.com/sto-now

Solution for a typical test:

1 80-100 LOC + 50-80 LOC in header files

2 45-75 minutes



Solutions

https://tinyurl.com/sto-now

Solution for a typical test:

1 80-100 LOC + 50-80 LOC in header files

2 45-75 minutes



Solutions

https://tinyurl.com/sto-now

Solution for a typical test:

1 80-100 LOC + 50-80 LOC in header files

2 45-75 minutes

Solution must compile to be accepted!



https://tinyurl.com/sto-now

Example test



Example test

https://tinyurl.com/sto-now

Your task is to implement a fragment of a system for managing a TODO
list. Your program will store a list of tasks to do and display that list on
the screen. See Figure 1 for a class diagram.



https://tinyurl.com/sto-now



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)



https://tinyurl.com/sto-now



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)

C. Implement column formatters via inheritance (2 points)



https://tinyurl.com/sto-now



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)

C. Implement column formatters via inheritance (2 points)

D1. Implement ColumnFormatter class:

(1) create STL collection of column formatters (1 point)
(2) iterate over that collection, render columns by calling abstract

method (2 points)



https://tinyurl.com/sto-now



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)

C. Implement column formatters via inheritance (2 points)

D1. Implement ColumnFormatter class:

(1) create STL collection of column formatters (1 point)
(2) iterate over that collection, render columns by calling abstract

method (2 points)

E. Create main function that constructs example tasks and displays them (2
points)

B2. (extends B1) Add a static field to Task class. (2 points)

D2. (extends D1) De-allocate memory in ColumnFormatter destructor (2 points)

D3. (extends D1) Extend Column class to return column description, use that
method to display column headers. (3 points)



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)

C. Implement column formatters via inheritance (2 points)

D1. Implement ColumnFormatter class:

(1) create STL collection of column formatters (1 point)
(2) iterate over that collection, render columns by calling abstract

method (2 points)

E. Create main function that constructs example tasks and displays them (2
points)

B2. (extends B1) Add a static field to Task class. (2 points)

D2. (extends D1) De-allocate memory in ColumnFormatter destructor (2 points)

D3. (extends D1) Extend Column class to return column description, use that
method to display column headers. (3 points)



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)

C. Implement column formatters via inheritance (2 points)

D1. Implement ColumnFormatter class:

(1) create STL collection of column formatters (1 point)
(2) iterate over that collection, render columns by calling abstract

method (2 points)

E. Create main function that constructs example tasks and displays them (2
points)

B2. (extends B1) Add a static field to Task class. (2 points)

D2. (extends D1) De-allocate memory in ColumnFormatter destructor (2 points)

D3. (extends D1) Extend Column class to return column description, use that
method to display column headers. (3 points)



Example test

https://tinyurl.com/sto-now

Specification:

A. Create class structure according to the diagram. (3 points)

B1. Implement methods in Task class. (1 point)

C. Implement column formatters via inheritance (2 points)

D1. Implement ColumnFormatter class:

(1) create STL collection of column formatters (1 point)
(2) iterate over that collection, render columns by calling abstract

method (2 points)

E. Create main function that constructs example tasks and displays them (2
points)

B2. (extends B1) Add a static field to Task class. (2 points)

D2. (extends D1) De-allocate memory in ColumnFormatter destructor (2 points)

D3. (extends D1) Extend Column class to return column description, use that
method to display column headers. (3 points)



Grading scale

https://tinyurl.com/sto-now

Grading scale:

5

4.5

4

3.5

3

2 (fail)



Grading scale

https://tinyurl.com/sto-now

Grading scale:

5 - 17-18 points

4.5 - 16 points

4 - 14-15 points

3.5 - 13 points

3 - 11-12 points

2 (fail) - 0-10 points



Modularity

https://tinyurl.com/sto-now

A B1 C D1 E B2 D2 D3
Req# (3pts) (1pt) (2pts) (1pt+2pts) (2pts) (2pts) (2pts) (3pts)

(i) X
(ii) X X
(iii) X X X
(iv) X X X
(v) X X X X
(vi) X X X
(vii) X
(viii) X

(ix) X



Modularity

https://tinyurl.com/sto-now

A B1 C D1 E B2 D2 D3
Req# (3pts) (1pt) (2pts) (1pt+2pts) (2pts) (2pts) (2pts) (3pts)

(i) X
(ii) X X
(iii) X X X
(iv) X X X
(v) X X X X
(vi) X X X
(vii) X
(viii) X

(ix) X

All possible combinations of tasks that allow achieving a passing grade must test all the
basic requirements!



Modularity

https://tinyurl.com/sto-now

A B1 C D1 E B2 D2 D3
Req# (3pts) (1pt) (2pts) (1pt+2pts) (2pts) (2pts) (2pts) (3pts)

(i) X
(ii) X X
(iii) X X X
(iv) X X X
(v) X X X X
(vi) X X X
(vii) X
(viii) X

(ix) X

For example: A + B1 + C + D1 + E = 11 points



Modularity

https://tinyurl.com/sto-now

A B1 C D1 E B2 D2 D3
Req# (3pts) (1pt) (2pts) (1pt+2pts) (2pts) (2pts) (2pts) (3pts)

(i) X
(ii) X X
(iii) X X X
(iv) X X X
(v) X X X X
(vi) X X X
(vii) X
(viii) X

(ix) X

But also: A + D1 + D2 + D3 = 11 points



Grading process

https://tinyurl.com/sto-now

Grading process:

not possible to test programs by running them

inspection of source code, no automated grading tools

uniform structure of all solutions; a single one takes 3-4 minutes to
grade, so about an hour for a lab group



Practical analysis

https://tinyurl.com/sto-now

Practical analysis

75 students over course of 3 years, over 120 individual tests



Practical analysis

https://tinyurl.com/sto-now

Question 1: Do students take advantage of test modularity? Do they
skip subtasks they do not know how to do and focus on the ones they
can do?



Practical analysis

https://tinyurl.com/sto-now

Question 1: Do students take advantage of test modularity? Do they
skip subtasks they do not know how to do and focus on the ones they
can do?

Answer: Yes. Many students with lower grades do exactly that.



Practical analysis

https://tinyurl.com/sto-now

Question 1: Do students take advantage of test modularity? Do they
skip subtasks they do not know how to do and focus on the ones they
can do?

Answer: Yes. Many students with lower grades do exactly that.

Caveat: make it clear to the students that this is what they are expected
to do.



Practical analysis

https://tinyurl.com/sto-now

Question 1: Do students take advantage of test modularity? Do they
skip subtasks they do not know how to do and focus on the ones they
can do?

Answer: Yes. Many students with lower grades do exactly that.

Caveat: make it clear to the students that this is what they are expected
to do.

Numbering of subtasks indicates dependencies.



Practical analysis

https://tinyurl.com/sto-now

Question 2: Does the test enforce the course learning outcomes? Do
students that pass it demonstrate basic skills (i)-(vi)?



Practical analysis

https://tinyurl.com/sto-now

Question 2: Does the test enforce the course learning outcomes? Do
students that pass it demonstrate basic skills (i)-(vi)?

Answer Yes. There were no cases where a student would pass a test
without fulfilling all the basic requirements.



Practical analysis

https://tinyurl.com/sto-now

Question 3: Do students feel they are being judged fairly?



Practical analysis

https://tinyurl.com/sto-now

Question 3: Do students feel they are being judged fairly?

Answer Yes. They more often attribute their performance on the test to
their knowledge than to external factors.



Summary

https://tinyurl.com/sto-now

To summarise:

a simple idea, but only in hindsight

a product of refinement over a course of several years

this approach is more of a validation method than a recipe; relies on
expert knowledge



Summary

https://tinyurl.com/sto-now

To summarise:

a simple idea, but only in hindsight

a product of refinement over a course of several years

this approach is more of a validation method than a recipe; relies on
expert knowledge



Summary

https://tinyurl.com/sto-now

To summarise:

a simple idea, but only in hindsight

a product of refinement over a course of several years

this approach is more of a validation method than a recipe; relies on
expert knowledge



Summary

https://tinyurl.com/sto-now

To summarise:

a simple idea, but only in hindsight

a product of refinement over a course of several years

this approach is more of a validation method than a recipe; relies on
expert knowledge



Summary

https://tinyurl.com/sto-now

Future work:

generalisation to a broader scope

making intuitions presented in this work more precise?



Summary

https://tinyurl.com/sto-now

Future work:

generalisation to a broader scope

making intuitions presented in this work more precise?



Summary

https://tinyurl.com/sto-now

Future work:

generalisation to a broader scope

making intuitions presented in this work more precise?



Summary

https://tinyurl.com/sto-now

More in the paper:

detailed presentation and discussion of learning outcomes

structure of lab sessions

full text of the test

more details of practical analysis

validity assessment



Summary

https://tinyurl.com/sto-now

More in the paper:

detailed presentation and discussion of learning outcomes

structure of lab sessions

full text of the test

more details of practical analysis

validity assessment



Summary

https://tinyurl.com/sto-now

More in the paper:

detailed presentation and discussion of learning outcomes

structure of lab sessions

full text of the test

more details of practical analysis

validity assessment



Summary

https://tinyurl.com/sto-now

More in the paper:

detailed presentation and discussion of learning outcomes

structure of lab sessions

full text of the test

more details of practical analysis

validity assessment



Summary

https://tinyurl.com/sto-now

More in the paper:

detailed presentation and discussion of learning outcomes

structure of lab sessions

full text of the test

more details of practical analysis

validity assessment



Summary

https://tinyurl.com/sto-now

More in the paper:

detailed presentation and discussion of learning outcomes

structure of lab sessions

full text of the test

more details of practical analysis

validity assessment



https://tinyurl.com/sto-now

Please email questions to
jan.stolarek@ed.ac.uk



SIGCSE 2020

Portland, Oregon, USA

Jan Stolarek Przemys law Nowak

University of Edinburgh, UK

Lodz University of Technology, Poland

Lodz University of Technology, Poland

A Modular, Practical Test for a Programming Course

https://tinyurl.com/sto-now


