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We want to teach students how to program

...but how do we they learned the skill?
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Typical approach:

individual test in front of a computer

task: implement a program
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Sounds like the Right Thing, but in practice often implemented in a way
that hinders accurate assessment:

subtasks may not be independent

or the opposite: subtasks correspond to discrete grades, but are
independent

monolithic all-or-nothing tests with no clear grading structure
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A modular, practical programming test:

1 based on learning outcomes

2 enforces minimal requirements

3 skills assessed independently from one another

Result: accurate, comprehensive, and fair assessment of students’ skills
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This is an experience report
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Context and scope:

OOP course, 3rd semester undergraduate

students (assumed to) know basics of C++ from previous courses

course duration: 15 weeks

each week: a 90-minute lecture + a 90-minute lab session

this talk only about lab sessions

each lab session in groups of 12-20 students per TA
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Create object-oriented programs in C++ language based on a
provided design.

Use object-oriented elements of the C++ Standard Library.
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First, we elaborate the details of learning outcomes. Basic requirements:

(i) create classes and inheritance structure according to an UML class diagram;

(ii) properly initialize objects using constructors;

(iii) implement methods to read and modify fields of an object or perform other simple
operations on it;

(iv) call methods of an object, both directly and via pointers – this includes calling virtual
methods in derived classes via pointer to a base class;

(v) operate (create/add/remove/iterate) on basic Standard Template Library (STL)
collections, like vectors;

(vi) incorporate C++ knowledge from the previous semesters (e.g., handling of streams,
random number generation, use of unions, enumerations, etc.) into object-oriented
programs.
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In addition we wish that students:

(vii) use static class components;
(viii) properly allocate and de-allocate memory via pointers (including

virtual destructors if necessary);
(ix) extend the program with new methods not shown in an UML class

diagram, based only on written description of their behavior
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Test environment:

Windows + GCC + CodeBlocks

no tools that translate UML to code
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Solution for a typical test:

1 80-100 LOC + 50-80 LOC in header files

2 45-75 minutes

Solution must compile to be accepted!
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Your task is to implement a fragment of a system for managing a TODO
list. Your program will store a list of tasks to do and display that list on
the screen. See Figure 1 for a class diagram.
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B1. Implement methods in Task class. (1 point)
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Grading scale:

5 - 17-18 points

4.5 - 16 points

4 - 14-15 points

3.5 - 13 points

3 - 11-12 points

2 (fail) - 0-10 points
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A B1 C D1 E B2 D2 D3
Req# (3pts) (1pt) (2pts) (1pt+2pts) (2pts) (2pts) (2pts) (3pts)

(i) X
(ii) X X
(iii) X X X
(iv) X X X
(v) X X X X
(vi) X X X
(vii) X
(viii) X

(ix) X
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All possible combinations of tasks that allow achieving a passing grade must test all the
basic requirements!
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A B1 C D1 E B2 D2 D3
Req# (3pts) (1pt) (2pts) (1pt+2pts) (2pts) (2pts) (2pts) (3pts)

(i) X
(ii) X X
(iii) X X X
(iv) X X X
(v) X X X X
(vi) X X X
(vii) X
(viii) X

(ix) X

But also: A + D1 + D2 + D3 = 11 points
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Grading process:

not possible to test programs by running them

inspection of source code, no automated grading tools

uniform structure of all solutions; a single one takes 3-4 minutes to
grade, so about an hour for a lab group
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Practical analysis

75 students over course of 3 years, over 120 individual tests
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Question 1: Do students take advantage of test modularity? Do they
skip subtasks they do not know how to do and focus on the ones they
can do?

Answer: Yes. Many students with lower grades do exactly that.

Caveat: make it clear to the students that this is what they are expected
to do.

Numbering of subtasks indicates dependencies.
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Question 2: Does the test enforce the course learning outcomes? Do
students that pass it demonstrate basic skills (i)-(vi)?

Answer Yes. There were no cases where a student would pass a test
without fulfilling all the basic requirements.
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Question 3: Do students feel they are being judged fairly?

Answer Yes. They more often attribute their performance on the test to
their knowledge than to external factors.
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a product of refinement over a course of several years

this approach is more of a validation method than a recipe; relies on
expert knowledge
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Please email questions to
jan.stolarek@ed.ac.uk
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