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Abstract

Wavelet transform has a wide area of application
in signal processing. However there is no single
wavelet perfectly suitable for every task. In practice
Daubechies 4 is the most commonly used wavelet,
since it is well suited for analysis of many natural
signals and it offers a straightforward interpretation
of the results. It would be very useful to develop
a method for adaptive synthesis of a wavelet trans-
form suitable for particular task. Artificial neural net-
works offer such ability. So far this approach wasn’t
explored. This paper presents neural network for syn-
thesis of orthogonal wavelet transform and a method
of unsupervised training of this network.

1 Introduction

Wavelet transform plays an important role in signal
analysis, compression and processing. During last
years it has acquired a lot of attention from the re-
searchers and it seems that is has become more pop-
ular than other linear transforms like DFT, DHT
or DCT. Unlike these transforms Discrete Wavelet
Transform (DWT) doesn’t have one strictly defined
set of basis functions. So far many wavelets have
been designed, each with its unique properties. It
is important that chosen wavelet basis function pre-
cisely corresponds to characteristics of analysed sig-
nal. Therefore it is necessary to develop methods for
adaptive synthesis of a wavelet best suitable for par-
ticular task.

Some attempts in that field have already been
made. In [10] parametrization of Daubechies wavelets
was proposed. This allowed to adjust wavelet’s prop-
erties by changing the parameters. In [3] and [8] lat-
tice structure for designing two–channel perfect re-
construction filters was presented. This approach
was based on representing a filter bank in a form
of parametrized lattice structure. Parameters were
optimized using well–known numerical methods (e.g.
quasi–Newton method) and the resulting values, to-
gether with the lattice structure, defined the filter.

This paper presents a novel approach to adaptive
synthesis of a wavelet transform. Generalized lattice
structure and orthogonal lattice structure are pre-
sented. Fast Neural Network with topology based on

this structures is introduced. Network’s weights cor-
respond to lattice structure parameters and they are
modified during learning process leading to optimiza-
tion of defined objective function. Main contribution
of this paper is presentation of effective method for
unsupervised training of such multilayer network us-
ing backpropagation algorithm.

2 Lattice structure

Wavelet synthesis method presented in this paper is
based on lattice structure introduced and described
in [11]. Lattice structure is based on two–point base
operations

Dk =
[
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11 wk
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]
, (1)

where k stands for the index of operation. Such two–
point base operation can be written in form of a ma-
trix equation (see Figure 1a)[
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Let us assume that Dk is invertible, i.e. condition
wk

11w
k
22 − wk

12w
k
21 6= 0 holds true. Hence there exists

inverse transformation D−1
k such that DkD−1

k = I,
where I is the identity matrix (Figure 1b).

Forward lattice structure is composed of K/2
stages, each containing Dk operations repeated N/2
times, where K and N are the lengths of the filter’s
impulse response and of the processed signal respec-
tively (see Figure 1c). On each stage of the lattice
structure, elements of the signal are processed in pairs
by Dk base operations. After each stage base oper-
ations are shifted down by one and the lower input
of the last base operation in the current stage is con-
nected to the upper output of the first base operation
in the preceding stage (t1 and t2 on Figure 1c).

Inverse lattice structure is created by reversing for-
ward lattice structure and replacing each Dk opera-
tion with its inverse operation D−1

k . Cyclic shift is
performed in the opposite direction (Figure 1d).

On Figure 1c and 1d all Dk operations within one
layer are identical, however it is possible to design
lattice structure in which operations within one layer
are different.
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Figure 1: Base operations: a) forward, b) inverse
Lattice structure for K = 6, N = 8: c) forward, d) inverse.

Presented lattice structure can be used to calculate
DWT. Therefore, upper outputs (b1 on Figure 1a) of
base operations in last layer will be referred to as
“low–pass outputs” and lower outputs (b2 on Figure
1a) will be referred to as “high–pass outputs”.

3 Orthogonal lattice structure

Let us assume that Dk transform is orthogonal. By
definition scalar product of Dk basis functions (i.e.
rows or columns of Dk transform) equals zero:

wk
11w

k
21 + wk

12w
k
22 = 0 . (3)

Therefore:

Dk ·DT
k = D , (4)

where DT
k is transpose of Dk matrix and D is a

diagonal matrix (entries outside the main diagonal
are all zero). This means, that although orthogonal
Dk transform can be inverted by simply transposing
the transformation matrix, it doesn’t preserve signal’s
energy. Energy is preserved however, when each of
the basis functions (each row or column of Dk ma-
trix) has unit length:

Dk ·DT
k = I , (5)

where I is the identity matrix. Such transform is
called orthonormal.

Equation 3 is explicitly satisfied when:

• w21 = w12 and w22 = −w11. This implies that
transform is symmetric:

Sk = S−1
k =

[
w11 w12

w12 −w11

]
. (6)

• w21 = −w12 and w22 = w11. This implies that
transform is asymmetric:

Fk =
[

w11 w12

−w12 w11

]
,

F−1
k =

[
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w12 w11

]
.

(7)

Matrices given by equations 6 and 7 have differ-
ent properties and not every transform can be rep-
resented in form of both of these matrices. Let us
consider Haar transform [9]. It is a 2–tap trans-
form, therefore it can be performed using one layer
lattice structure. Haar low–pass filter is given by co-
efficients [

√
2

2 ,
√

2
2 ] and the high–pass filter is given by

coefficients [
√

2
2 ,−

√
2

2 ]. Therefore Dk transform cor-
responding to Haar transform is given by matrix

Dk =

[ √
2

2

√
2

2√
2

2 −
√

2
2

]
, (8)

which is equivalent to equation 6 with w11 = w12 =√
2

2 . We notice that Haar transform can’t be repre-
sented in form of Fk matrix (equation 7).

4 Fast neural network for
wavelet synthesis

Fast Neural Network is used for determination of op-
timal lattice structure parameters, leading to syn-
thesis of optimal wavelet. In this approach every
Dk base operation is replaced by a pair of linear neu-
rons, each of them with two inputs and one output,
which guarantees a straightforward relation between
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the weights in a neural network and the coefficients
of lattice structure. All pairs of neurons within one
layer have identical weights. To represent orthogo-
nal lattice structure, orthogonal neural network [4]
must be used. In such case each Dk base operation
is replaced with Basic Orthogonal Operation Neuron
(BOON) corresponding to equation 6 or 7.

4.1 Teaching methods

In order to determine lattice structure coefficients us-
ing neural network, objective function must be de-
fined. This function is minimized during learning pro-
cess and it shows how well network realizes transform
of a signal.

First approach is the supervised teaching. In this
case for each training pattern expected output value
is known, which means that transform the network is
supposed to learn must be known a priori. Objective
function minimized in the learning process is a stan-
dard square error function [2, 7]. This method doesn’t
lead to synthesis of any new transforms and therefore
it is only a proof of concept, that the network is able
to learn a wavelet transform. It has been shown [5]
that network with topology based on proposed lattice
structure is able to learn Daubechies wavelets.

To synthesize a new wavelet unsupervised teach-
ing must be used, since expected output values for
patterns in a training set are unknown. In such
case square error can’t be used as objective function.
Therefore new objective function must be designed.
Following criteria for teaching the neuron are pro-
posed:

• each neuron preserves energy,

• energy ratio between the outputs of each neuron
is fixed to some desired value.

Objective function for a single layer is given by for-
mula

E =
N/2∑
j=1

2∑
i=1

(dji − b2
ji)

2 , (9)

where j is the number of neuron in the layer, b2
ji is

the energy of i–th output of a j–th neuron and dji is
the expected energy on that output. Given expected
energy proportions h and g, where h+g = 1, expected
output values are determined: dj1 = h · (a2

j1 + a2
j2),

dj2 = g · (a2
j1 + a2

j2).
It is important to notice, that it is not possible to

find such weights of the neuron, that it will produce
expected energy proportions for each input signal. It
is however possible to determine such weights that,
for a given class of signals, energy proportions will
be true in a statistical sense. Therefore it is impor-
tant, that the network is trained using signals of some
particular class, e.g. image or sound.

Above teaching method is suitable for one–layer
network. The problem arises when multilayer net-
work must be trained. One of the solutions to

this problem is forward propagation of input signal
through the network and then training layers inde-
pendently with different energy proportion defined
for each layer [6]. In this paper defining expected en-
ergy proportion only for the output layer and teach-
ing the network using backpropagation algorithm is
proposed. For a straightforward determination of ob-
jective function’s gradient in respect to the weights
Signal Flow Graphs (SFG) are used [1, 2]. Due to
non–standard form of objective function, adjustment
of backpropagation algorithm is required. Since each
output of the network is raised to the power of two
before comparing it to the expected value, it is neces-
sary to multiply error value backpropagated for each
output by −2bji [1, 2].

Weights modification is performed according to the
steepest descent algorithm:

wn+1 = wn − η∇E(w) , (10)

where wn is weights vector in n–th iteration, η is the
learning step and ∇E(w) is error function’s gradi-
ent calculated in respect to network weights. It is
known [7], that this method doesn’t preserve norm of
weights, which is not acceptable in case of orthonor-
mal transform, since the preservation of energy re-
quires that weight vector for each base operation has
unit length. Therefore, for preservation of energy,
weights must be normalized after each update.

5 Experimental validation

An orthogonal neural network with topology based on
proposed orthogonal lattice structure with orthonor-
mal symmetric base operations was designed for ex-
periments. Teaching set contained 400 training pat-
terns, each pattern being 16–element vector taken
from rows of an image. Testing set contained 1000 16–
element vectors taken from different image. Values
in both sets were normalized to fit into [0, 1] range.
Network’s initial weights were chosen randomly from
range [−1, 1] and then normalized, so each row of base
operation would have unit length. Experiments were
carried out using 4–tap, 6–tap and 8–tap transforms
(two–, three–, and four–layer networks respectively).

Table 1 presents the results of the learning pro-
cess. First column shows expected percentage of in-
put energy located on low–pass outputs of network.
Remaining amount of energy is located on high–pass
outputs of network, summing up to give a total of
100%. Remaining columns show testing result ob-
tained on both training and testing sets, expressed as
actual percentage of energy located on low–pass out-
puts of network. Results presented in the table are
average from 10 independent tests.

Network was trained using off–line teaching [2].
Optimal values of parameters (e.g. number of teach-
ing epochs or learning step) may differ depending on
number of layers in the network. Results clearly show
that proposed network is able to achieve desired en-
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Expected Actual results
energy of low– 4–tap transform 6–tap transform 8–tap transform
pass outputs training testing training testing training testing

0% 2.18% 4.96% 1.65% 6.72% 1.87% 4.69%
10% 8.15% 11.71% 8.04% 12.14% 8.42% 11.25%
30% 29.23% 31.13% 28.94% 31.56% 29.13% 31.55%
50% 51.71% 50.29% 49.64% 50.74% 49.97% 50.80%
70% 70.94% 70.80% 70.79% 69.35% 70.98% 68.44%
90% 91.49% 88.96% 91.86% 88.20% 91.54% 91.05%
100% 95.55% 93.92% 94.24% 93.83% 94.05% 94.57%

Table 1: Results for 4–tap, 6–tap and 8–tap transform

ergy distribution in case of image signals. However, it
is impossible to distribute 100% of energy to low–pass
or high–pass outputs.

6 Conclusion

Neural network presented in this paper can be used
for adaptive synthesis of a wavelet with desired en-
ergy distribution for a signal of particular class. Pre-
sented teaching method allows to effectively train
multilayer network in an unsupervised learning pro-
cess given only expected energy ratio between low–
pass and high–pass outputs of the lattice structure.

It was demonstrated, that symmetric and asym-
metric orthogonal base operations have different
properties. Therefore within the further development
of proposed orthogonal lattice structure it is neces-
sary to determine relation between type of base oper-
ation and the class of orthogonal wavelet transforms
possible to synthesize. It is also necessary to develop
training methods that would allow to effectively train
neural network corresponding to multilevel wavelet
analysis.
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