
Understanding Basic Haskell Error
Messages

by Jan Stolarek 〈jan.stolarek@p.lodz.pl〉

Haskell is a language that differs greatly from the mainstream languages of today.
An emphasis on pure functions, a strong typing system, and a lack of loops and
other conventional features make it harder to learn for programmers familiar only
with imperative programming. One particular problem I faced during my initial
contact with Haskell was unclear error messages. Later, seeing some discussions
on #haskell, I noticed that I wasn’t the only one. Correcting a program without
understanding error messages is not an easy task. In this tutorial, I aim to remedy
this problem by explaining how to understand Haskell’s error messages. I will
present code snippets that generate errors, followed by explanations and solutions.
I used GHC 7.4.1 and Haskell Platform 2012.2.0.0 [1] for demonstration. I assume
reader’s working knowledge of GHCi. I also assume that reader knows how data
types are constructed, what type classes are and how they are used. Knowledge of
monads and language extensions is not required.

Compilation errors

Simple mistakes

I’ll begin by discussing some simple mistakes that you are likely to make because
you’re not yet used to the Haskell syntax. Some of these errors will be similar to
what you know from other languages—other will be Haskell specific.

Let’s motivate our exploration of Haskell errors with a short case study. Stan-
dard Prelude provides some basic list operating functions like head, tail, init
and last. These are partial functions. They work correctly only for a subset of
all possible inputs. These four functions will explode in your face when you apply
them to an empty list:

The Monad.Reader Issue 20

ghci> head []

*** Exception: Prelude.head: empty list

You end up with an exception that immediately halts your program. However, it
is possible to create a safe version of head function which will work for all possible
inputs without throwing an exception. Such functions are called total functions.

To reach our goal we will use the Maybe data type. The function will return
Nothing when given an empty list; otherwise, it will return the result of applying
head to xs wrapped in the Just constructor. Here’s our completely bugged first
attempt:

safeHead [a] -> Maybe a

safeHead [] = Nothing

safeHead xs = Maybe head xs

The first line is intended to be a type annotation, while the remaining two lines
are the actual code. Loading this sample into ghci produces a parse error:

ghci> :l tmr.hs

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:1:14: parse error on input ‘->’

Failed, modules loaded: none.

Parse errors indicate that the program violates Haskell syntax. The error message
starts in the third line (not counting the blank one). It begins with name of the file
and exact location of the error expressed as line and column numbers separated
with colons. In this case the error is in the first line, which means our intended
type annotation. The compiler complains about -> which was not expected to
appear at this location. The problem is that the name of a function should be
separated from type annotation with ::. If there’s no ::, the compiler assumes we
are defining a function body, treats [a] as a pattern binding and expects that it is
followed either by = or | (a guard). Of course there are lots of other ways to cause
parse error, but they all are dealt with in the same way: use your favourite Haskell
book or tutorial to check what syntax Haskell expects for a particular expression.
Let’s fix this particular mistake by adding the missing :: symbol:

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead xs = Maybe head xs

and see what happens:

22

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> :r

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:3:15: Not in scope: data constructor ‘Maybe’

Failed, modules loaded: none.

Now that the type annotation is correct, it turns out that there’s an error in third
line. Not in scope means that some variable, function or, as implied in this case,
a data constructor, is not known to the compiler. You certainly know this kind of
error from different programming languages. Let’s look at the definition of Maybe
data type to understand what is wrong:

ghci> :i Maybe

data Maybe a = Nothing | Just a -- Defined in ‘Data.Maybe’

In this definition, Maybe is a type constructor, while Nothing and Just are value
constructors, also referred to as data constructors. This means that when you
want to create a value of a given type you must use either Nothing or Just. In our
code we have mistakenly used Maybe. There is no data constructor called Maybe:
there is a type constructor called Maybe. Let’s replace that Maybe with Just, which
was our original intention:

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead xs = Just head xs

The previous error is gone, only to produce a new one, shown in Listing 1. This
time, the first two lines of the error message are quite explanatory, if you know

ghci> :r

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:3:15:

The function ‘Just’ is applied to two arguments,

but its type ‘a0 -> Maybe a0’ has only one

In the expression: Just head xs

In an equation for ‘safeHead’: safeHead xs = Just head xs

Failed, modules loaded: none.

Listing 1: Applying data constructor to too many arguments.

23

The Monad.Reader Issue 20

that every data constructor is in fact a function. The definition of Maybe data
type shows that the Just value constructor takes one parameter, while in our code
we have mistakenly passed two parameters: head and xs. From a formal point
of view this is a type system error. These will be discussed in more detail in the
next section, but we treat this one here because it is very easy to make if you
forget that function application is left-associative and that functions are curried
by default. This means that Just head xs is the same as ((Just head) xs). We
can use either parentheses or function composition and the $ operator to override
the default associativity. I’ve elaborated on the second approach on my blog [2] so
I will not go into explaining it here; we’ll just use the parentheses:

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead xs = Just (head xs)

Surprise, surprise! The code finally compiles:

ghci> :r

[1 of 1] Compiling Main (tmr.hs, interpreted)

Ok, modules loaded: Main.

Our function safeHead now works as intended:

ghci> safeHead []

Nothing

ghci> safeHead [1,2,3]

Just 1

You could implement safe versions of other unsafe functions in the same way,
but there’s no need to: there already is a library called safe [3], which provides
different safe versions of originally unsafe functions.

Let’s recall the not-in-scope error that we saw earlier. It was caused by using
a function which didn’t exist. Another common situation in which this error arises
is when you use an existing function, but fail to import it. Let’s look at a simple
piece of code in which a different name is given to an already existing function:

module Main where

sortWrapper xs = sort xs

Loading this code also produces the not in scope error:

24

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> :r

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:22:

Not in scope: ‘sort’

Perhaps you meant ‘sqrt’ (imported from Prelude)

Failed, modules loaded: none.

GHCi doesn’t know sort function, but it knows sqrt from standard Prelude and
suggests that we might have made a typo. The sort function we want to use is
not in the standard Prelude so it must be explicitly imported. A problem arises
if you know that a certain function exists, but you don’t know in which package it
is located. For such situations use hoogle [4]. If you have hoogle installed localy
you can look up package name like this:

[jan.stolarek@GLaDOS : ~] hoogle --count=1 sort

Data.List sort :: Ord a => [a] -> [a]

Module name is located before the function name. In this case it is Data.List.
Now we can import module like this:

module Main where

import Data.List (sort)

sortWrapper xs = sort xs

or even more explicitly:

module Main where

import qualified Data.List as Lists (sort)

sortWrapper xs = Lists.sort xs

So if you get a not-in-scope error, but you know that the function really exists,
the missing import is most likely the culprit.

Another common mistake made by beginners is attempting to invoke functions
directly from a module. A typical example might look like this

module Main where

fact :: Int -> Int

fact 0 = 1

fact n = n * fact (n - 1)

print (fact 5)

25

The Monad.Reader Issue 20

This code gives a correct definition of factorial function and then tries to print
the result of invoking this function. This, however, is incorrect and results in a
following error:

ghci> :r

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:6:1: Parse error: naked expression at top level

Failed, modules loaded: none

In Haskell everything in the module must be enclosed within function definitions. It
is forbidden to call functions directly in a way shown in the above example. There
are two possible solutions: first is removing the call to print (fact 5), loading
module into GHCi and invoking fact 5 from interactive prompt. Alternatively,
if you want your program to run as a separate executable, enclose the call to
print (fact 5) within the main function, which is an entry point to every Haskell
program:

module Main where

fact :: Int -> Int

fact 0 = 1

fact n = n * fact (n - 1)

main = print (fact 5)

This code can be compiled and executed as a standalone executable:

[jan.stolarek@GLaDOS : ~] ghc --make tmr.hs

[1 of 1] Compiling Main (tmr.hs, tmr.o)

Linking tmr ...

[jan.stolarek@GLaDOS : ~] ./tmr

120

A naked expression error can also be easily caused by accidentally typing Import

instead of import:

module Main where

Import Data.List

sortWrapper xs = sort xs

This results in an error, because compiler treats Import as an application of data
constructor to the parameter Data.List. Remember: capitalization matters in
Haskell!

26

Jan Stolarek: Understanding Basic Haskell Error Messages

Type system errors

The complexity of Haskell’s strong static type system can cause problems for be-
ginners. Seemingly identical errors can result in very different error messages, and
dealing with this can be a challenge. In this section I will discuss some common
type system errors.

ghci> True && 1

<interactive>:23:9:

No instance for (Num Bool)

arising from the literal ‘1’

Possible fix: add an instance declaration for (Num Bool)

In the second argument of ‘(&&)’, namely ‘1’

In the expression: True && 1

In an equation for ‘it’: it = True && 1

Listing 2: Non-exhaustive pattern in a guard.

I’ll begin exploring errors related to type system with a very simple example
shown in Listing 2. It demonstrates what can happen when you pass parameters
of the wrong type to a function. The statement No instance for (Num Bool)

arising from the literal ‘1’ is the key to understanding the error message.
The last three lines of the error message provide information on exact expression
that caused the error. In our case that’s the second argument of (&&) operator1.
Even without knowing what exactly happened, it seems clear that there’s a problem
with 1 literal.

To understand what is going on, you need to know that numbers in Haskell are
polymorphic. This means that when you write an integer literal in Haskell—just as
we’ve written 1 in our example—it can be interpreted as different type depending
on the context it is used in. Here’s an example:

ghci> 1 :: Int

1

ghci> 1 :: Double

1.0

In the first case, the literal 1 is interpreted as an Int; in the second one, it is
interpreted as a Double. Both uses are correct and don’t cause a type error. This

1The it value, mentioned in the last line, is equal to the value of last expression evaluated in
GHCi.

27

The Monad.Reader Issue 20

ghci> :i Bool

data Bool = False | True -- Defined in GHC.Bool

instance Bounded Bool -- Defined in GHC.Enum

instance Enum Bool -- Defined in GHC.Enum

instance Eq Bool -- Defined in GHC.Classes

instance Ord Bool -- Defined in GHC.Classes

instance Read Bool -- Defined in GHC.Read

instance Show Bool -- Defined in GHC.Show

Listing 3: Information about Bool data type.

works as if the fromInteger function defined in the Num class was called implicitly
on the numeric literal. This means that True && 1 and True && fromInteger 1

are equivalent expressions. Let’s check the type signature of fromInteger:

ghci> :t fromInteger

fromInteger :: Num a => Integer -> a

This means that fromInteger takes an Integer and returns a value of any type
a, with a restriction that the type a belongs to the Num type class. What type
exactly should be returned? That depends on the context in which fromInteger

was applied. For example, if the return value is required to be Int then the
implementation of fromInteger defined in the Num Int instance declaration is
called. That specific implementation returns a value of type Int. This mechanism
allows integer literal to become an instance of a type belonging to Num type class.

With this knowledge, we can go back to our example in which integer literal 1 was
used as a parameter to (&&) function. This function takes two Bool parameters
and returns a single Bool:

ghci> :t (&&)

(&&) :: Bool -> Bool -> Bool

which means that in order for literal 1 to be a valid parameter to (&&), the type
returned by fromInteger should be Bool. There is one problem though. The
Bool type is not an instance of Num type class, as shown in Listing 3. However,
it should be, since the fromInteger function imposes a constraint that its return
value belongs to Num type class. This is exactly what the error message said and
that is the reason why a type error occurs. The next line of the error message
suggests a solution: Possible fix: add an instance declaration for (Num

Bool). Indeed, if we made Bool type an instance of Num type class the problem
would be gone. In some cases, this may be the solution. Deriving Bool to be an

28

Jan Stolarek: Understanding Basic Haskell Error Messages

instance of Num is certainly a good exercise that you can try out. In many other
cases however this error means you wanted something different than you actually
wrote. Let’s assume here that we wanted 1 to denote logical truth. Fixing that is
easy:

ghci> True && True

True

The constraints imposed by the type classes propagate in the type system. Here’s
a simple example that demonstrates this: let’s say we want to write a function that
tells if the two parameters passed to it are equal:

isEq :: a -> a -> Bool

isEq x y = x == y

Our isEq function expects two parameters that are of the same type and returns
a Bool. Our code looks perfectly reasonable, but loading that code into GHCi
results with an error shown in Listing 4.

ghci> :l tmr.hs

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:14:

No instance for (Eq a)

arising from a use of ‘==’

In the expression: x == y

In an equation for ‘isEq’: isEq x y = x == y

Failed, modules loaded: none.

Listing 4: Error caused by a lack of type class constraint.

The first two lines of this message are the most important: they say that type
a should be an instance of Eq type class and that this requirement is imposed by
the use of == function. Let’s inspect the type of (==):

ghci> :t (==)

(==) :: Eq a => a -> a -> Bool

Indeed the (==) function expects that its arguments are instances of Eq type class.
That constraint was propagated to isEq function, which uses (==). We must
therefore add a type class constraint to parameters of isEq:

29

The Monad.Reader Issue 20

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:17:

Could not deduce (b ~ a)

from the context (Eq a, Eq b)

bound by the type signature for

isEq :: (Eq a, Eq b) => a -> b -> Bool

at tmr.hs:2:1-17

‘b’ is a rigid type variable bound by

the type signature for isEq :: (Eq a, Eq b) => a -> b -> Bool

at tmr.hs:2:1

‘a’ is a rigid type variable bound by

the type signature for isEq :: (Eq a, Eq b) => a -> b -> Bool

at tmr.hs:2:1

In the second argument of ‘(==)’, namely ‘y’

In the expression: x == y

In an equation for ‘isEq’: isEq x y = x == y

Failed, modules loaded: none.

Listing 5: Comparing two different instances of Eq type class.

isEq :: Eq a => a -> a -> Bool

isEq x y = x == y

This fixes the problem. Let’s now see what happens if we try to compare param-
eters of two different types, both belonging to Eq type class:

isEq :: (Eq a, Eq b) => a -> b -> Bool

isEq x y = x == y

The error message is shown in Listing 5. The (b ~ a) notation indicates equality
of the types a and b. The compiler uses this notation to say Could not deduce

(b ~ a), which means that a and b should be identical, but the type definition we
provided does not guarantee it. The requirement of types a and b being of the same
type is a direct consequence of a type signature of (==) which, as we recall, requires
its parameters to be of the same type. The term rigid type variable indicates
that our types a and b have been directly specified by the type annotation [5] and
the compiler is not free to unify them2. We have already seen a correct version of
this code, but we can also make it work in a different way:

2Unification of two types means that they are assumed to be the same type.

30

Jan Stolarek: Understanding Basic Haskell Error Messages

{-# LANGUAGE TypeFamilies #-}

isEq :: (Eq a, Eq b, a ~ b) => a -> b -> Bool

isEq x y = x == y

Enabling TypeFamilies language extension and adding a ~ b type constraint in-
forms the compiler that a and b can be unified to be the same type. The above
code is for demonstration purposes: it makes no real sense to write the type dec-
laration in this way, since a and b will be unified into one type. It can be written
in a more straightforward way. Loading this into GHCi and checking type of isEq
will show that it’s actually isEq :: Eq b => b -> b -> Bool. The two distinct
types introduced deliberately have disappeared because the compiler was allowed
to unify them.

When you begin working with type classes, you may find it difficult what type
class constraints to impose on your functions. Here’s where the Haskell’s type
inference is useful: write down your function without the type declaration, load it
into GHCi and use Haskell’s type inference to determine function’s type for you.
This can be done using the :t command on a function. Suppose the isEq function
was written without type declaration. Here’s what Haskell infers about the isEq’s
type:

ghci> :t isEq

isEq :: Eq a => a -> a -> Bool

This is a correct type signature and you can simply copy it to your code.
We’ve seen what will happen when type signature does not contain appropriate

class restrictions. Let’s now see what happens when a function’s type signature is
inconsistent with function’s implementation. Assume we want to write a function
that returns a first letter from a String. We could want to have a type signature
like this:

getFirstLetter :: String -> String

This means that getFirstLetter function takes a value of type String and re-
turns a value of type String. For example, if we pass "Some string" as a pa-
rameter then getFirstLetter will return value "S". Since String in Haskell is
a synonym for [Char] (list of Chars) we could use head function to take the first
element of a String. Our getFirstLetter function would then look like this:

getFirstLetter :: String -> String

getFirstLetter = head

31

The Monad.Reader Issue 20

ghci> :r

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:18:

Couldn’t match expected type ‘String’ with actual type ‘Char’

Expected type: String -> String

Actual type: [Char] -> Char

In the expression: head

In an equation for ‘getFirstLetter’: getFirstLetter = head

Failed, modules loaded: none

Listing 6: Expected and actual type mismatch error.

The head function has type [a] -> a, which means it takes a list of some type
a and returns a single element of type a, not a list. However, the type signature for
getFirstLetter requires that the return argument be a list of Chars. Therefore,
the provided signature is inconsistent with the actual return type of the function.
Haskell will notice that when you try to load the code into GHCi and report an
error as shown in Listing 6. It says that type annotation in the source code defines
the return type to be [Char], but the actual type inferred by the compiler is Char.
There are two possible fixes for this problem. First, if we are really fine with
getting a single Char instead of a String, we can change the type signature to
String -> Char (or [Char] -> Char, since it’s the same due to type synonyms).
On the other hand, if we really expect to get a String from our function, we need
to change the implementation. In this case the result of head should be wrapped
in a list, which can be done like this:

getFirstLetter :: String -> String

getFirstLetter xs = [head xs]

or using a point-free style:

getFirstLetter :: String -> String

getFirstLetter = (: []) . head

The type mismatch error is probably the one you’ll be seeing most often. There
is really no way of anticipating all possible situations where it might occur. The
above case was easy, because the implementation of a function was correct and the
only problem was fixing the type annotation. Most often however you’ll end up
in situations where you’ve written some code and the type-checker complains that
this code is type-incorrect. Here’s an example of how this may look like:

32

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> :r

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:4:26:

Couldn’t match expected type ‘Int’ with actual type ‘Char’

In the first argument of ‘(*)’, namely ‘acc’

In the first argument of ‘(+)’, namely ‘acc * 10’

In the expression: acc * 10 + digitToInt x

Failed, modules loaded: none.

Listing 7: Expected and actual type mismatch error.

import Data.Char

asInt :: String -> Int

asInt = foldl (\x acc -> acc * 10 + digitToInt x) 0

This code takes a String representation of a number and turns it into an Int.
Well. . . almost: if you try to compile it you’ll get an error about mismatching
types, as shown in Listing 7. The message says that acc (accumulator) is of the
wrong type—Char instead of Int. In such cases it might not be immediately
obvious what exactly is wrong. The only way to deal with such errors is to inspect
the incorrect expressions. In this example the code isn’t really complicated so this
will be easy. The asInt function uses only foldl and one anonymous lambda
function. Let’s begin by checking the type signature of foldl:

ghci> :t foldl

foldl :: (a -> b -> a) -> a -> [b] -> a

This type signature says that foldl takes three parameters. These parameters are
a function of type a -> b -> a, an accumulator of type a and a list containing
elements of type b. By looking at the type variables in this signature—that is, a and
b—you can see that the first parameter to folding function, the accumulator and
the return value of foldl are of the same type a. We passed 0 as the accumulator
and expect the return value of asInt function to be Int. Therefore type a is
inferred to be Int. The compiler complains, however, that variable acc used as
parameter to (*) is of type Char, not Int. The parameters to the lambda function
are x and acc. According to type signature of foldl, x should be of type Int,
because it is of the same type as the accumulator. On the other hand acc is of
the same type as elements of the list passed as third parameter to foldl. In this

33

The Monad.Reader Issue 20

ghci> :m + Data.List

ghci> ’A’ ‘isPrefixOf‘ "An error"

<interactive>:8:1:

Couldn’t match expected type ‘[a0]’ with actual type ‘Char’

In the first argument of ‘isPrefixOf’, namely ’A’

In the expression: ’A’ ‘isPrefixOf‘ "An error"

In an equation for ‘it’: it = ’A’ ‘isPrefixOf‘ "An error"

Listing 8: Passing argument of wrong type to a function.

example, the list is of type [Char] so acc, being a single element, is of type Char.
Well, this should be the other way around: acc should be of type Int; x should
be of type Char. We conclude this error was caused by writing the parameters of
lambda in incorrect order. The correct code therefore is:

import Data.Char

asInt :: String -> Int

asInt = foldl (\acc x -> acc * 10 + digitToInt x) 0

In some cases you will get an error message that doesn’t specify concrete type.
Consider example shown in Listing 8. The isPrefixOf function expects its both
parameters to be lists of the same type:

ghci> :t isPrefixOf

isPrefixOf :: Eq a => [a] -> [a] -> Bool

As soon as compiler realizes that the first parameter is not a list, it complains.
It doesn’t even reach the second parameter to analyze it and infer that the first
list should contain Chars. That is the reason why it uses a list [a0], where a0

represents any type. Listing 9 shows the result of swapping the two parameters.
This time, the compiler is able to infer the exact type of the elements required in
the second list. By the time compiler reaches the second parameter, it has already
analyzed the first one and it knows that that parameter was a list of Chars.

Another common error related to types is type ambiguity. I’ll demonstrate it
using the read function, which is used to convert String representation of some
value to that value. The read function is defined in the Read type class and has
type signature read :: Read a => String -> a. All data types within standard
Prelude, except function types and IO types, are instances of Read. Every type

34

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> "An error" ‘isPrefixOf‘ ’A’

<interactive>:9:25:

Couldn’t match expected type ‘[Char]’ with actual type ‘Char’

In the second argument of ‘isPrefixOf’, namely ’A’

In the expression: "An error" ‘isPrefixOf‘ ’A’

In an equation for ‘it’: it = "An error" ‘isPrefixOf‘ ’A’

Listing 9: Passing argument of a wrong type to a function.

ghci> read "5.0"

<interactive>:11:1:

Ambiguous type variable ‘a0’ in the constraint:

(Read a0) arising from a use of ‘read’

Probable fix: add a type signature that fixes these

type variable(s)

In the expression: read "5.0"

In an equation for ‘it’: it = read "5.0"

Listing 10: Type ambiguity.

that is an instance of Read type class provides its own definition of read function.
This means that the compiler must know what resulting type to expect in order to
call a correct implementation of the read function3. This is polymorphism, which
was already discussed when we talked about fromIntegral function. Listing 10
shows that the error that occurs when the polymorphic type variable cannot be
inferred to a concrete type. In this case, the compiler doesn’t know which version
of read function should be called. It suggests that we can solve the problem by
adding a type signature. Let’s try that:

ghci> read "5.0" :: Double

5.0

It is important to provide correct type signature:

ghci> read "5.0" :: Int

*** Exception: Prelude.read: no parse

3Even if there was only one instance of Read class, the compiler wouldn’t know that and you
would get type ambiguity error.

35

The Monad.Reader Issue 20

ghci> id -1

<interactive>:16:4:

No instance for (Num (a0 -> a0))

arising from a use of ‘-’

Possible fix: add an instance declaration for (Num (a0 -> a0))

In the expression: id - 1

In an equation for ‘it’: it = id - 1

Listing 11: Incorrect usage of unary negation.

This code produces an exception because implementation of read for Int instances
of Read doesn’t expect any decimal signs.

The type system can come into play in very unexpected moments. Let’s play
a little bit with id, the identity function, which returns any parameter passed to
it:

ghci> id 1

1

ghci> id 0

0

ghci> id (-1)

-1

Notice that the negative parameter was wrapped in parentheses. Had we neglected
this, it would result in a No instance for (Num (a0 -> a0)) error, as shown in
Listing 11. We’ve already seen this error before when we talked about polymor-
phism of integer literals. This time the compiler expects the a0 -> a0 type to be
an instance of Num type class. The a0 -> a0 denotes a function that takes an value
of type a0 and returns a value of the same type a0. What seems strange is the fact
that the compiler expects literal 1 to be of type a0 -> a0. The problem here is
that the (-) sign is treated as an infix binary operator denoting subtraction, not
as unary negation operator as we expected 4. The strange error message blaming
1 literal is caused by the fact that (-) operator expects its parameters to be of
the same type:

ghci> :t (-)

(-) :: Num a => a -> a -> a

4Section 3.4 of Haskell 2010 Language Report [6] gives more detail on that matter.

36

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> id - "a string"

<interactive>:11:6:

Couldn’t match expected type ‘a0 -> a0’ with actual type ‘[Char]’

In the second argument of ‘(-)’, namely ‘"a string"’

In the expression: id - "a string"

In an equation for ‘it’: it = id - "a string"

Listing 12: Error caused by incorrect parameters that should be of the same type.

The type of first parameter was inferred to be a0 -> a0. Therefore the second
parameter is also expected to be of type a0 -> a0, but this type is not an in-
stance of Num type class. Just as before, this error results from the implicit use
of fromIntegral function. In this example, however, there’s one thing that you
might be wondering. From the type signature of (-), we can see that its parame-
ters should belong to Num type class. The question is this: how can we be certain
that this error is raised by the constraint in the fromIntegral function and not by
the constraint in the (-) function itself? There’s an easy way to verify this. Let’s
replace the second argument of (-) with a value of type String. We use String,
because string literals don’t implicitly call any function that would impose addi-
tional type constraints. The error that results in this case, shown in Listing 12,
says that compiler expects the second argument to be the same type as the first
one, which is a restriction resulting from the type signature of (-). There is no
complaint about Num type class, which allows to infer that at this point Num type
class constraint imposed by (-) hasn’t been checked yet. Let’s verify this conclu-
sion by supplying (-) with two arguments of the same type that is not an instance
of Num. The result is shown in Listing 13. This time the compiler successfully
verified that both parameters of (-) are of the same type a0 -> a0, and it could
go further to check if type class constraints are satisfied. However, the a0 -> a0

type is not an instance of Num type class, hence the type class constraint is violated
and No instance for error arises.

Some runtime errors

We finally managed to get past the compilation errors. It was a lot of work, prob-
ably more than in other programming languages. That’s another characteristic
feature of Haskell: the strong type system moves much of the program debug-
ging up front, into the compilation phase. You probably already heard that once
a Haskell program compiles it usually does what the programmer intended. That’s

37

The Monad.Reader Issue 20

ghci> id - id

<interactive>:20:4:

No instance for (Num (a0 -> a0))

arising from a use of ‘-’

Possible fix: add an instance declaration for (Num (a0 -> a0))

In the expression: id - id

In an equation for ‘it’: it = id - id

Listing 13: Another No instance for (Num (Int -> Int)) error.

mostly true, but this doesn’t mean that there are no runtime errors in Haskell. This
section will discuss some of them.

Runtime errors in Haskell most often take the form of runtime exceptions. At
the very beginning of this paper, I showed you that some functions don’t work for
all possible inputs and can raise an exception:

ghci> head []

*** Exception: Prelude.head: empty list

In languages like Java, exceptions are your friend. They provide a stack trace that
allows to investigate the cause of an error. It is not that easy in Haskell. Runtime
exceptions don’t give you any stack trace, as this is not easily implemented in
a language with lazy evaluation. You are usually left only with a short error
message and line number.

One of the most commonly made errors resulting in runtime exceptions is non-
exhaustive patterns in constructs like function definitions or guards. Let’s recall
safeHead function that we’ve written in the first section:

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHEad xs = Just (head xs)

This function contains a typo: the function name in the third line is misspelled as
safeHEad (notice the capital E). This code compiles perfectly, but will result in
an error if we try to call safeHead function for non-empty list:

ghci> safeHead []

Nothing

ghci> safeHead [1,2,3]

*** Exception: tmr.hs:2:1-21: Non-exhaustive patterns in function

safeHead

38

Jan Stolarek: Understanding Basic Haskell Error Messages

The argument [1,2,3] passed to the function safeHead couldn’t be matched
against any pattern in the function definition. That’s what non-exhaustive pat-
tern error means. This is due to the typo I made in the third line. For Haskell
compiler everything is perfectly fine. It treats the code as definition of two dif-
ferent functions: safeHead, matching only empty lists, and safeHEad, matching
both empty and non-empty lists. Note that applying safeHEad to empty list will
result in a runtime exception.

We were unexpectedly hit by the non-exhaustive pattern problem during runtime
because GHCi has most warnings disabled by default. You can enable most of the
warnings by passing -Wall command line switch when running ghci command5.
Now GHCi will warn us during the compilation about non-exhaustive patterns in
safeHead function and lack of type signature for accidentally defined safeHEad

function. See Listing 14.

ghci> :l tmr.hs

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:1:

Warning: Pattern match(es) are non-exhaustive

In an equation for ‘safeHead’: Patterns not matched: _ : _

tmr.hs:3:1:

Warning: Top-level binding with no type signature:

safeHEad :: forall a. [a] -> Maybe a

Ok, modules loaded: Main.

Listing 14: Compilation warnings.

The non-exhaustive pattern error can also occur in an incorrect guard. To
illustrate this, let’s create our own signum function:

mySignum :: Int -> Int

mySignum x

| x > 0 = 1

| x == 0 = 0

You see the error, don’t you? Listing 15 show what happens when we call mySignum
function for negative arguments. This error is easily corrected by adding the third
guard:

5See [7] for more details.

39

The Monad.Reader Issue 20

ghci> mySignum 1

1

ghci> mySignum 0

0

ghci> mySignum (-1)

*** Exception: tmr.hs:(14,1)-(16,16): Non-exhaustive patterns in

function mySignum

Listing 15: Non-exhaustive pattern in a guard.

mySignum :: Int -> Int

mySignum x

| x > 0 = 1

| x == 0 = 0

| otherwise = -1

The otherwise function is defined to always return True, so the third guard
will always evaluate if the previous guards didn’t. The compiler can also give
a warning about non-exhaustive guards in a same way it gives warning about
non-exhaustive patterns in function definition. Remember that order of guards
matters, so otherwise must always be the last guard.

Summary

This completes our overview of basic Haskell error messages. By now, you should
know how to read error messages and how to correct the problems in your code
that caused them. The above list is by no means an exhaustive one: there are a lot
of different errors you will encounter when you start using some more advanced
features of Haskell. Perhaps one day you’ll even write a program that will cause
My brain just exploded error. Until then, happy error solving!

Acknowledgements

I thank the great Haskell community at #haskell IRC channel. They helped me to
understand error messages when I was beginning my adventure with Haskell. Many
thanks go to Edward Z. Yang for his feedback. I also thank Marek Zdankiewicz
for reviewing draft version of this paper.

40

References

[1] http://hackage.haskell.org/platform/.

[2] http://ics.p.lodz.pl/~stolarek/blog/2012/03/function-composition-and-dollar-operator-in-haskell/.

[3] http://hackage.haskell.org/package/safe.

[4] http://www.haskell.org/hoogle/.

[5] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for GADTs. In ICFP, pages 50–61
(2006).

[6] http://www.haskell.org/onlinereport/haskell2010/.

[7] http://www.haskell.org/ghc/docs/latest/html/users_guide/

options-sanity.html.

http://hackage.haskell.org/platform/
http://ics.p.lodz.pl/~stolarek/blog/2012/03/function-composition-and-dollar-operator-in-haskell/
http://hackage.haskell.org/package/safe
http://www.haskell.org/hoogle/
http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/ghc/docs/latest/html/users_guide/options-sanity.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/options-sanity.html

