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Summary. This paper presents lattice structure and orthogonal lattice structure
for synthesis of a wavelet transform. Lattice structure is based on parametrized
2 × 2 operations. Adjustment of parameter values leads to synthesis of a new
wavelet transform. Fast neural network with topology based on lattice structure
is applied to determine values of the parameters. Factorization–based reduction in
number of arithmetic operations is demonstrated.
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1 Introduction

During the last two decades, wavelet transform became an important tool in
the area of compression, analysis and processing of signals. The most popular
are the Daubechies wavelets [1] that are well suited for analysis of many natu-
ral signals and offer a straightforward interpretation of the result. Many other
kinds of wavelets have been designed, each with its unique characteristics.
However, there is no single wavelet perfectly suitable for every task. It is very
important, that chosen wavelet family closely corresponds to characteristics of
analysed signal. Therefore it is important to develop a method to adaptively
synthesize a wavelet most suitable for particular task.

Some attempts in that field have already been made. In [10] parametriza-
tion of wavelet transform was proposed. This allows adjusting wavelet’s prop-
erties by optimization of parameters. In [4] and [9] lattice structure for design-
ing two–channel perfect reconstruction filters was presented. This approach
was based on representing a filter bank in a form of parametrized lattice struc-
ture. Parameters were then optimized using well–known numerical methods
(e.g. quasi–Newton method) and the resulting values, together with the lattice
structure, defined the filter.



2 Jan Stolarek and Mykhaylo Yatsymirskyy

This paper presents method for synthesis of a wavelet transform, based on
generalized lattice structure [11]. Fast Neural Network is used to determine
optimal values of parameters.

2 Lattice structure

Let us consider two–point base operation

Dk =
[

dk
11 dk

12

dk
21 dk

22

]
, (1)

where k stands for the index of operation. Let us assume that Dk is invert-
ible, i.e. condition dk

11d
k
22 − dk

21d
k
12 6= 0 holds true. Hence there exists inverse

transformation D−1
k such that DkD−1

k = I, where I is the identity matrix.
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Fig. 1. The lattice structure for K = 6, N = 8 : a) forward, b) inverse.
Base operations: c) forward, d) inverse

We introduce forward lattice structure that is composed of K/2 stages,
each containing Dk operations repeated N/2 times, where K and N are the
lengths of the filter’s impulse response and of the processed signal respec-
tively (see Figure 1a). In the first stage the pairs of x2i and x2i+1 samples
are assigned to the inputs of each Dk operation, i = 0, 1, . . . , N/2 − 1. Base
operations in successive stages are shifted down by one position and the lower
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input of the last base operation in the current stage is connected to the upper
output of the first base operation in the preceding stage. In other words we
perform the cyclic N–element shift of the mentioned outputs to the left (up-
ward). The outputs of the last stage are the outputs yi of the whole structure,
where i = 0, 1, . . . , N − 1.

The inverse lattice structure emerges as the reversed forward structure,
where base Dk operations are substituted by inverse operations D−1

k and the
cyclic shift is performed in the opposite direction. Figure 1b shows inverse
structure for the structure presented in Figure 1a. The cyclic left (Figure 1a)
and right (Figure 1b) shift operations are represented by t1 and t2 symbols.

In structures presented on Figure 1a and 1b all Dk operations within
one stage are identical. However it is possible, that Dk operations within
single stage are different. This allows for more precise adjustment of filter’s
properties.

Let us now estimate the number of arithmetic operations in the proposed
structures. In a general case in order to execute K/2 stages while operating
on N samples of a signal it is required to perform the number of (N/2)(K/2)
base operations Dk, where each operation requires two additions and four
multiplications. Hence the forward and the inverse structures require α(K, N)
additions and µ(K, N) multiplications separately where α(K, N) = KN/2 and
µ(K, N) = KN . In other words for one pair of the processed elements each
structure requires K additions and 2K multiplications. In order to achieve
reduction in the number of arithmetic operations it is required to consider the
particular base operations. This will be presented in the next section of this
paper.

The main advantage of the proposed lattice structure is the ease of its
realization in the pipelined scheme. In a general case the pipeline scheme
contains K/2 blocks of base operations and K/2 − 1 blocks z−1 with delays
by one element, see Figure 2.
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Fig. 2. The pipeline scheme for K/2–stage lattice structure

In the scheme in Figure 2 there is no cyclic shift which must be performed
within the hardware or software implementation, e.g. by cyclic repetition of
the first samples of input signal. The proposed pipeline scheme is simpler
than the well-known lifting one. Firstly it reduces the number of required
two-point base operations, e.g. by one for K = 4 and K = 6. Moreover, it
utilizes the base operations of one type and all delays are placed outside base
operations. In the lifting structure delays and z1 shifts are enclosed within
base operations.
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3 Orthogonal lattice structure

Let us assume that Dk transformation is orthogonal, which implies that con-
dition dk

11d
k
21 + dk

12d
k
22 = 0 holds true. We will consider two cases of such

transformations :

• symmetric, when Sk = S−1
k

Sk = S−1
k =

[
pk qk

qk −pk

]
(2)

• asymmetric, when Fk 6= F−1
k

Fk =
[

pk qk

−qk pk

]
, F−1

k =
[

pk −qk

qk pk

]
, (3)

where pk and qk are non-zero numbers. Each of transforms (2) and (3) still
requires two additions and four multiplications. We will demonstrate with
an example of Sk transform the technique of reducing the number of mul-
tiplications in structures from Figure 1 and 2. To achieve it, the following
factorization is introduced :

Sk = EkTk , (4)

where

Tk =
[

1 tk
tk −1

]
, tk =

qk

pk
, Ek =

[
pk 0
0 pk

]
. (5)

For instance, let us modify the pipeline scheme for the orthogonal trans-
forms from Figure 2. Factorization (4) is applied to each stage of the trans-
form. However we perform only Tk transformations while Ek transformations
are grouped in the additional stage, see Figure 3.
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Fig. 3. The pipeline scheme for K/2–stage orthogonal lattice structure

As a result we obtain K/2 blocks of simplified base operations Tk, K/2−
1 blocks with z−1 delays and one block EK/2 = E1E2 . . . EK/2. Each Tk

operation requires two multiplications and two addition. Within EK/2 block
two multiplications are performed. Hence the scheme from Figure 3 requires
K additions and K + 2 multiplications for one pair of output elements. In
comparison to a general lattice structure we obtain almost twofold reduction
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in the number of multiplications preserving the same number of additions. It
should be noted that EK/2 block performs multiplications of it’s inputs by
the constant value and therefore it can be omitted by grouping the constants
at successive factorizations of lengths N/2, N/4, . . .. It results in reduction of
two multiplications.

4 Synthesis of a wavelet transform

The values of a lattice structure coefficients can be determined by the means of
two methods: the standard one and the one taking advantage of artificial neu-
ral networks. Standard method is based on determining the relations between
impulse responses of H and G filters and coefficients of base operations. In
this method we rewrite the impulse responses in the form of algebraic formulas
depending on structure’s coefficients. Next we follow the standard scheme that
requires solving the system of equations including the orthogonality and the
zero moments equations. This method is not simple since it requires solving
the system of K non–linear equations and, in general, produces coefficients
that are independent of specific requirements imposed on wavelet transform.

More interesting method utilizes the technique of artificial neural networks.
This method was developed for the synthesis of fast algorithms for Fourier–
like transforms [2, 5, 6]. In this method each stage of the lattice structure
is replaced with one hidden layer of a linear neural network. Each Dk base
operation is replaced with two neurons, each of them with two inputs and
one output, which guarantees a straightforward relation between the weights
in a neural network and the coefficients of base operations. All pairs of neu-
rons within one layer have identical weights, which means that such neural
network is equivalent to a pipeline scheme. To represent orthogonal lattice
structure, orthogonal neural network [5] must be used. In this case each Dk

base operation is replaced with Basic Orthogonal Operation Neuron (BOON)
corresponding to equation 2.

By training the neural network we determine values of lattice structure’s
coefficients. With supervised teaching, proposed network is capable of learn-
ing already existing wavelet transforms, e.g. Daubechies wavelets [7]. More
interesting method relies on unsupervised teaching, when we don’t know the
exact expected output values. In order to teach the network using this method
we must first define the objective function that will be optimized during the
learning process. Our objective function will be based on energy — we expect
that each BOON will preserve energy of its input signal and that energy ratio
between the outputs of that neuron will be fixed to some desired value. This
means, that for each BOON objective function is given by formula

E =
2∑

i=1

(di − b2
i )

2 , (6)
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where b2
i is the energy of i–th output of BOON and di is the expected energy

on that output. Given expected energy proportions h and g, where h+ g = 1,
we determine expected output values : d1 = h(a2

1 + a2
2), d2 = g(a2

1 + a2
2). In

case of multilayer network, signal is propagated forward through the network
and then each layer is trained independently (different energy proportions can
be defined for each layer).

It is important to notice, that it is not possible to find such weights of
the neuron, that it will produce expected energy proportions for each input
signal. It is however possible to determine such weights that, for a given class
of signals, energy proportions will be true in a statistical sense. Therefore it is
important, that the network is trained using signals of some particular class.

Network was trained using off–line teaching [3]. Weights modification was
performed according to the steepest descent algorithm:

wn+1 = wn − η∇E(w) , (7)

where wn is weights vector in n–th epoch, η is the learning step and ∇E(w)
is error function’s gradient calculated in respect to network weights. It is
known [8], that this method doesn’t preserve norm of weights, which is not
acceptable, since the preservation of energy requires that each weight vector
has unit length. Therefore weights must be normalized after each update.

To explain teaching process in detail Haar transform will be used. Haar
wavelet is a 2–tap transform, therefore it can be performed using one layer net-
work. Haar low–pass filter is given by coefficients [

√
2

2 ,
√

2
2 ] and the high–pass

filter is given by coefficients [
√

2
2 ,−

√
2

2 ]. Therefore Dk transform corresponding
to Haar transform is given by matrix

Dk =

[ √
2

2

√
2

2√
2

2 −
√

2
2

]
, (8)

which is equivalent to equation 2 with pk = qk =
√

2
2 . We notice that

Dk =
[

cos(45◦) sin(45◦)
sin(45◦) −cos(45◦)

]
=

[
cos(45◦) −sin(45◦)
sin(45◦) cos(45◦)

]
·
[

1 0
0 −1

]
, (9)

which means that we can graphically interpret Haar transform, assuming that
each pair of signal elements processed by one BOON is treated as coordinates
of a point. Equation 9 shows that Haar transform is a superposition of scaling
y coordinates of all points by −1 (reflection over x-axis) and rotation by 45
degrees. Daubechies wavelets and other n-tap wavelets (n > 2) can be treated
as multiple reflections and rotations with coordinates shift after each rotation.
Therefore, teaching process can be viewed as search for optimal rotation angles
that, for a given teaching set, provide output energy proportions closest to
expected values.
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5 Experimental validation

An orthogonal neural network with topology based an proposed lattice struc-
ture was designed for experiments. Teaching set consisted of 400 samples,
each sample being 16–element vector taken from rows of an image. Testing
set consisted of 1000 16–element vectors taken from different image. Values
in both sets were normalized to fit into [0, 1] range. Network’s initial weights
were chosen randomly from range [−1, 1] and then normalized, so each row of
Dk transform would have unit length. Only two weights for each Dk operation
were randomized. Remaining two weights are defined by orthogonality of base
operation (see Equation 2). Experiments were carried out using 2–tap and
4–tap transforms (one– and two–layer networks respectively).

Expected energy of Rotation Actual result
upper outputs angle training set testing set

2–tap transform

0% 131.42◦ 2.27% 4.18%
10% 138.78◦ 2.03% 4.17%
30% −11.99◦ 29.37% 31.01%
50% 90.86◦ 49.65% 48.83%
70% 13.67◦ 71.17% 71.03%
90% −118.64◦ 91.18% 88.99%
100% 42.68◦ 97.98% 96.02%

4–tap transform

[10%, 10%] [120.83◦, 90.51◦] 7.4% 9.19%
[10%, 90%] [136.01◦, 16.32◦] 90.29% 88.51%
[50%, 50%] [−60.67◦, 153.26◦] 53.63% 53.77%
[90%, 10%] [30.74◦, 0.28◦] 7.65% 9.44%
[90%, 90%] [60.13◦,−90.77◦] 92.88% 90.86%

Table 1. Results for 2–tap and 4–tap transform

Table 1 presents the results of the learning process. First column shows
expected percentage of input energy located on upper outputs of BOONs
(i.e. b1 outputs from Figure 1c). Remaining amount of energy is located on
lower outputs of BOONs, summing up to give a total of 100%. Second column
shows determined rotation angle. Remaining two columns show testing result
obtained on both training and testing sets, expressed as actual percentage of
energy located on upper outputs of BOONs. Columns in the 4–tap section
show the same information, however expected energy proportions and deter-
mined rotation angles are given for both layers of the network, while testing
results are given only for output layer. Results show that network is able to
achieve desired energy distribution in case of image signals, sometimes with
error less than 1%.
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6 Conclusion

The lattice structure proposed in this paper can be characterized by the sim-
plicity of its framework and the effectiveness of calculations. It is constructed
on the basis of iterative repetition of simple two–point base operations and
it can be implemented in the form of a simple pipelined scheme. As a result
it gives extensive possibilities of software and hardware implementations of
wavelet transforms with special indication on the integrated circuits.

Within the further development of the proposed lattice structure the re-
lation between the orthogonal lattice structure and the orthogonal wavelet
transform should be investigated in detail. It means that the class of wavelet
transforms that can be implemented with the orthogonal lattice structures
should be defined. From the practical point of view it is crucial to develop
novel training techniques of multilayer neural networks with topologies based
on the proposed lattice structure.

References

1. I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
2. M. Jacymirski and P. Szczepaniak. Neural realization of fast linear filters. In
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